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Abstract

We study the new problem of matching regions between
a pair of RGBD images given a large set of overlapping
region proposals. These region proposals do not have a
tree hierarchy and are treated as bags of regions. Match-
ing RGBD images using bags of region candidates with un-
structured relations is a challenging combinatorial prob-
lem. We propose a linear formulation, which optimizes the
region selection and matching simultaneously so that the
matched regions have similar color histogram, shape, and
small overlaps, the selected regions have a small number
and overall low concavity, and they tend to cover both of
the images. We efficiently compute the lower bound by solv-
ing a sequence of min-cost bipartite matching problems via
Lagrangian relaxation and we obtain the global optimum
using branch and bound. Our experiments show that the
proposed method is fast, accurate, and robust against clut-
tered scenes.

1. Introduction

Region matching between images is an important task in
computer vision. It is also challenging because of the dif-
ficulty of extracting regions consistently from one image to
another. Even with the same set of parameters, a segmenta-
tion method may give quite different partitions on two simi-
lar images. Instead of relying on segmentation algorithms to
give consistent partitions, we resort to a large set of region
candidates from different segmentation methods. By using
a large number of region proposals, we have a better chance
to find a subset that has a one-to-one matching between two
images. Since these region candidates do not have specific
relations to each other, we treat them as a bag of regions on
each image. In this paper, we propose a novel method to
optimize the region selection and matching between a pair
of RGBD images given a large bag of overlapping region
proposals in source and target images. Fig. | shows one ex-
ample of our method on matching the regions between two
RGBD images.

The fundamental problem of our region selection and
matching task is min-cost bipartite matching with global re-
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Figure 1. Finding region correspondence between RGBD images

using bags of region candidates. We extract candidate regions us-
ing different methods to form bags of candidates on the source
(a, b) and target (c, d) RGBD images. Our method optimizes the
region selection and matching using the graph model in (e) and
gives the matching result in (f, g). The same color in (f, g) indi-
cates matched regions.

gion constraints as shown in Fig. 1(e). Traditional bipartite
matching minimizes the matching costs with the constraint
that each site from one image at most matches one site on
the other image. To match a bag of overlapping regions, the
optimization needs to satisfy more conditions such as the
max-covering constraints, overlapping penalty constraints,
and the number constraints. Previous min-cost bipartite
matching methods, such as the Hungarian algorithm, cannot
be directly used any more. Finding the global optimal solu-
tion of the proposed region matching problem is a challeng-
ing combinatorial problem, which to our knowledge has not
been studied before.

1.1. Related methods

Matching non-overlapping regions between two images
has been intensively studied. A many-to-one region match-
ing method is proposed in [I]. This method matches
non-overlapping regions in the source and target color im-
ages. To handle region splitting and merging, partial region
matching method is proposed. Inexact matching [5] has
also been proposed to handle region splitting and merging.
Apart from matching in a single level, a region hierarchy
can be generated by organizing the regions and successively
merged ones into a tree. Matching regions in the tree has be
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studied in [2, 3]. Matching tree structured attributes has also
be studied in [6]. Organizing a single partition into a tree by
region merging may still not be able to capture the correct
segmentation for matching. Selecting a good merging plan
to generate the tree is also a challenging task. In this pa-
per, we propose to take advantage of a large set of region
candidates. Our method does not restrict the ways to gener-
ate region candidates. Any region generation methods such
as graph based method [16], category independent propos-
als [20], CPMC [19], RGBD region classification method
[13], k-means and many others can be used. By using dif-
ferent methods and a large set of proposals, we have a better
chance to find consistent regions between images. These re-
gion proposals cannot be organized into a tree. We simply
treat them as bags of regions. We propose a novel method
to select and match bags of regions between two RGBD im-
ages.

Our method is related to graph matching methods [9, 10,
I'l, 12], which have been used to match single deformable
object across images. To deal with multiple objects in two
images, we need to define a graph model for each object
and then match each model to the target image. The diffi-
culty is that we do not have a partition of the image to start
with and therefore it is difficult to define these graph mod-
els automatically. Our proposed method does not require
any knowledge about the object partition in images. It also
does not assume the movement of regions and how large the
movement is. Our method thus can handle region matching
with very large displacement, scaling and rotation.

In [14], video object segmentation and tracking also uses
a large set of region proposals. This method handles each
consistent object proposal across a video separately using
motion, abjectness and graph cuts. In contrast, our proposed
method finds the optimal regions with small overlap and
their matching simultaneously between two RGBD images.
In [4], superpixel matching is established between succes-
sive RGBD video frames using bipartite matching at each
level of the region partition tree. Our method deals with two
static RGBD images or two frames that may be far apart in
video, for which a consistent superpixel partition is hard to
obtain. Bipartite matching as shown in our experiments is
not the best option for our application. Bipartite matching
also cannot be used to solve the overlapping region match-
ing problem directly. These video processing methods are
hard to extend to match static images in our application.

Multi-model feature matching methods such as sequen-
tial RANSAC [22, 21] and progressive mode seeking [15]
have been proposed to find the model and feature matching
at the same time. These methods require strong features on
the objects, for example SIFT features on textured objects.
Our proposed method tackles the matching problem from
the point of region correspondence and it works for targets
without texture.

Our contribution in this paper is manyfold: (1) we pro-
pose a new problem of matching bags of regions across
two RGBD images; (2) we propose a novel integer linear
formulation of the problem; (3) we solve the problem ef-
ficiently by reducing it to min-cost bipartite matching us-
ing Lagrangian relaxation. Our experiments show that our
method gives promising results.

2. Method
2.1. Overview

We extract a large set of candidate regions from RGBD
images by using both color and 3D shape. Each candidate
region corresponds to a 3D surface patch in a scene. These
candidate regions may be overlapping. Since they can be
generated from different region proposal methods, there is
no tree hierarchy for the patches. By extracting a large set
of regions, we expect that there are subsets of regions in the
images that can be matched.

In more details, we find a subset A’ from region candidate
set I in RGBD image one, a subset ) from region candidate
set J in image two and a one-to-one mapping f : X —
Y that matches the regions, so that the following energy
function is minimized.

{CX, D, /) +T(X, )+ H(X,V)+ )

N(X,Y) -U(X, )}
s.t. X and ) are region subsets of I and J and

min
XV, f: XY

f is a one-to-one mapping from X to ).

Here C(X, Y, f) is the cost of matching regions in X" in im-
age one to regions in ) in image two using f. C'is small if
f correlates regions that have similar appearance, size and
shape. T'(.) penalizes the intersection among selected re-
gions in each RGBD image. H(.) penalizes the concavity
of 3D surface patches in X and ). The more a surface ex-
trudes away from the camera, the more concave a surface is.
N(.) quantifies the number of selected regions. U(.) rep-
resents the coverage of the selected regions in both source
and target images. By minimizing the above objective func-
tion, we find a subset of regions in two RGBD images and
the correspondence between them so that the matched ones
share similar color, size and shape, the overall concavity is
low, regions have small overlaps in both images and we use
a small number of region candidates to cover both images.
Optimizing the region matching is a combinatorial prob-
lem. It involves more constraints than traditional bipartite
matching. For example, there is an exclusion constraint
among the regions in each image: if one region is selected,
other regions that are overlapping with the region in a large
portion cannot be selected for matching. The global con-
straints on the region coverage and total number also com-
plicate the problem. Efficient min-cost bipartite matching
cannot be directly applied to this problem. Naive exhaus-
tive search is too complex for real problems with a lot of
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candidate regions. In the following, we propose a linear
formulation. We then propose a fast method to compute the
lower bound by reducing the problem to a sequence of min-
cost bipartite matching via Lagrangian relaxation. Then we
show how to search for the global optimal solution quickly
by using branch and bound.

2.2. Linear formulation

We formulate the optimization in Eq. (1) into an integer
linear optimization.

Local matching cost term

We use binary variable z; ; to indicate the matching from
region % in source image to region j in target image; if
the matching is true z; ; = 1 and otherwise 0. The total
matching cost is Ziel,jeJ ci %, where ¢; j is the cost
of matching region ¢ to region 7, and recall that I and .J are
the region candidate sets in source and target images respec-
tively. ¢; ; is a combination of the color histogram distance
and the shape descriptor distance between region ¢ and j.

We use a depth weighted color histogram to quantify re-
gion appearance. A depth weighted color histogram for re-
gion 7 is defined as h;(n) = >, .. n(vk)dz/ cos®(0),
where h;(n) is the frequency in color bin n, vy, is pixel k’s
color value, G; is the pixel set of region 7, IT,, (v) is 1 if v is
in bin n and otherwise 0, dj, is the depth of the pixel k, 0y,
is the angle between the pixel normal vector and the camera
optical axis. We treat each image pixel as the projection of
a small surface patch in 3D and d?/ cos?() is proportional
to the small surface patch area. Depth weighted color his-
togram of a 2D region is proportional to the color histogram
of the corresponding surface patch in 3D and is invariant to
the distance of cameras to targets. For color images, we
compute the histogram on RGB channels separately and
concatenate the vectors. In this paper, the bin number is
16 for each color channel. The color histogram distance
is computed using the y? distance between the weighted
color histograms. We use scale and rotation invariant mo-
ments [ 18] to quantify the shape of the projected regions on
2D image planes. L; norm is used to compute the distance
between two shape descriptors. Local matching cost is the
linear combination of the color and shape distances.

Intersection term

Apart from selecting region pairs with low matching costs,
the regions selected on both images should have small over-
laps. We introduce variables x; and y;, which are the re-
gion selection variables on image one and two for region
1 and j respectively. If region ¢ is selected in the match-
ing, z; = 1 and otherwise 0. Similar conditions hold for y.
The selection variables are related to the matching indicator
variable z by z; = ZjeJ Zijs Yj = Y _ieq %ij- To penal-
ize the overlaps between selected regions, we introduce the
term ), liv; + ZjeJ r;y;, where [; is the pixel number
of region ¢ and 7 is the pixel number of region j, into the

objective function. When the objective is minimized, the
algorithm tends to select non-overlapping regions, because
using overlapping regions to cover a given area will increase
the objective.

Covering term

Simply minimizing the local matching cost term and the re-
gion intersection penalty term would give a trivial all zero
solution because all the coefficients in the objective are non-
negative. We introduce a term to encourage the selected re-
gions to cover both the source and target images. We parti-
tion the source and target images into small tiles. We use p,,
to indicate whether tile m in source image is covered by a
selected region; p,, = 1 if the tile is covered and otherwise
pm = 0. Similarly we denote ¢, as the indicator variable
for tile n in target image. The covering term in the objective
is —(3 e Pm+ 2 nenr @n)> where M and AV are sets of
tiles in source and target images respectively. And we let
> iep,, Ti = Pm, Ym € M, and ZjeQn Yj > Qn, YN €
N where P, and ), are the region sets covering tile m in
image one and tile n in image two respectively. If all the
regions that cover a tile are not selected, the tile selection
variable will be zero. If at least one region that covers a tile
is selected, the corresponding tile selection variable has to
be 1 to minimize the objective. Therefore the summation
of all the tile selection indicator variables indeed represents
the coverage of the selected regions in the matching. With a
proper weight, the covering term tend to spread out the se-
lected regions during the matching to give a desirable result.

Convexity term

The above terms are still not enough, because there is no
constraint on the level of details to partition the scene.
The optimization may give a trivial solution in which both
source and target images are treated as a single region in the
matching. To avoid the degenerated case, we introduce the
concavity penalty term to control the level of region details.
For each 3D surface patch, its concavity is defined as the av-
erage distance of each point to the frontal hull. The frontal
hull is defined as follows. We compute the convex hull of
the points on a 3D surface patch. We then send rays from
the camera center to all the directions. The first intersection
points of these rays with the convex hull form the frontal
hull. Apparently, a “convex” surface patch that extrudes to-
wards the camera center has low concavity and a surface
patch that extrudes away from the camera center has larger
concavity. Let f; be the concavity of region ¢ in image one
and g; be the concavity of region j in image two, and /; and
r; be pixel numbers. The concavity penalty term in the ob-
jectiveis D, li fixi + 35 y7595y;. The concavity term
represents the total distance between the points in the scene
and the front hull of each selected region. It thus penalizes
the selection of large patches that stretch across several ob-
jects and helps control the detail level of region partition.
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The number term

There are in fact many ways to partition a scene into roughly
convex patches which have similar total concavity. If we
simply minimize the concavity, we have a bias towards par-
tition with small regions. We thus introduce another term to
penalize the number of regions selected in both images. We
prefer a relatively small number of large regions because
large regions have more distinguishing power for match-
ing. We strike the balance by introducing the number term
> ier i + 2 ;e yj into the objective function. By prop-
erly selecting the weight, the number term and the convexity
term automatically select the details of the region partition
in the matching.

Combining all the terms, we obtain the following mixed
integer linear program:

min Z Cij%i5 + Z(qf)li + ulifi +y)zi+ 2)
iel, jeJ iel

D @ri+urigi+ My = (Y Pt Y dn)

JjEJ meM neN
st mp = Zzim Yy = Zzw
jedJ el
i€ P, JEQn

z,y,z=0o0rl, 0<p,g<1

The mixed integer linear program is a combinatorial prob-
lem. A naive exhaustive search approach determines the 1
or 0 assignment to each of the matching variable z; ; by ex-
plicit enumerating. Such an approach is infeasible for prac-
tical problems that involve hundreds or thousands of can-
didate regions in the images. We propose an implicit enu-
meration approach by branch and bound. In this paper, we
manually set ¢ = 0.1, 4 = 1, = 20000, = 400, weight
for color to 2 and weight for shape to 1000. Here depth unit
is meter. These parameters are fixed in all the experiments.
Learning the parameters is also possible by maximizing the
gap between the energy of positive matching exemplars to
that of negative exemplars; the optimization is still linear.
2.3. Lower bound and Lagrangian relaxation

We compute the lower bound of Eq. (2). Even though
we can obtain the lower bound by relaxing the binary vari-
ables in the mixed integer program to floating point vari-
ables in [0,1], the linear program’s complexity is high for
problems with very large number of region candidates. We
propose a more efficient method to obtain a lower bound us-
ing Lagrangian relaxation. Without directly solving the lin-
ear program, we solve a sequence of easier min-cost bipar-
tite matching problems. The lower bound of our approach

is the same as the linear program relaxation.
Our integer program has the following format:

min(c’ z — e’ w) 3)
st. Az <1, Bz >w, 0 <w <1, zis binary,

in which ¢, for which we abuse the notation a bit, is deter-
mined by the local matching cost, the area intersection cost,
the concavity cost and the number cost, z denotes the vec-
tor of matching variables, e is the weight for the covering
variables w, which are p and ¢ in the original notation. The
2 and y terms have been absorbed into the z terms. Az < 1
is the bipartite matching constraint, Bz > w is the max-
covering constraint, and other constraints set the bounds for
variables.

In the above optimization, the max-covering constraint
complicates the problem. We use the Lagrangian dual to
obtain a lower bound. After moving the complicated con-
straints into the objective, the Lagrangian dual of the integer
program is

max minfc’ z — e’ w + AT (w — B2)] “)
= m};\lxmin[(cT —“A"B)z+ (AT — " )u]
st. Az < 1,0 <w < 1, and z is binary.

Here A > 0 is the vector of Lagrange multipliers. For any
feasible solution of the original integer program, A7 (w —
Bz) is non-positive and therefore the internal minimization
gives a lower bound of the original integer program for any
non-negative A\. The dual problem is much easier to solve
than the original integer program. For each given A, the
internal minimization can be separated:

[P1]: min(c” — A"B)z, st. Az <1,zisbinary.  (5)
[P2]: min(A\" —e")w, st 0<w<1. (6)

For P1, it is easy to verify that all the z variables with non-
negative coefficients have to take value 0. If not, we can
always zero their value and the objective function does not
increase. To solve P1, we build a network with the edges
that correspond to the variables z whose coefficients are
negative; the two ends of the edges correspond to regions
in the source and target images that z variables link. The
costs on these edges are the corresponding coefficients of
the z variable. Each edge’s capacity has a lower bound 0
and an upper bound 1. Min-cost max-flow of this network
gives the solution of P1. We use the augmented path method
to solve the min-cost matching problem. The time complex-
ity of this method is O(n?3) where n is the number of nodes
in the bipartite graph. The Hungarian algorithm can also
be used, which also has the complexity O(n?) if properly
implemented. In summary, the element of z is 0O if its co-
efficient is non-negative; other elements of z with negative
weights are determined by the min-cost bipartite matching.
P2 can be minimized simply by setting w to the upper or
lower bound based on the sign of the coefficients; if the co-
efficient \, — e, > 0, wy = 0, otherwise wy = 1.

Since min[(¢? — ATB)z + (AT — eT)w] is a concave
function of A, max min[(c?’ =\ B)z+ (AT —e®)w] can be
solved using the standard subgradient method that alternates
between the optimization of P1 and P2 and updating the .
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Figure 2. N}Jatching RGBD image pair using Lagrangian relax-
ation. (a, b): Source color and depth image. (c, d): Target color
and depth image. (e, f): Matching result from linear relaxation. (g,
h): Matching result from the Lagrangian relaxation. (i): Matching
cost matrix evolving during subgradient iteration. (j, k): « and y
selection during iteration. A dot indicates a selection. (1): Energy
of the Lagrangian dual during iteration.

We initialize A to a vector of large numbers so that most of
the elements in (¢ — AT B) is negative. After optimizing P1
and P2 to obtain solution to z and w using the current \, we
let A < max{0, A+ (w—Bz)}. The iteration goes on until
the relative energy increment of the Lagrangian relaxation
is less than a threshold. In this paper, we use a fixed step
size 0 and it gives good results.

The optimum of the Lagrangian relaxation of our prob-
lem equals that of the linear program relaxation. Notice that
min[(c? = A'B)z+ (AT —el)w]st. Az < 1,0 <w < 1,
and z = 0 or 1, is totally unimodular. Therefore, in the La-
grangian relaxation the binary constraint is superfluous and
can be replaced by floating point bound in [0,1]. The La-
grangian dual is thus also the dual of the linear relaxation
of the original problem. It has been proved [ 7] that in such
case Lagrangian dual’s energy equals that of the linear pro-
gram relaxation. Note that even though the energy of the
Lagrangian relaxation is the same as the linear program, the
z and w from the dual are not necessarily the optimal solu-
tion to the primal problem. However, if 2z and w are primal
feasible and satisfy the complimentary slackness condition
AT (w — Bz) = 0, then they also give the global optimal
solution to the primal problem.

Example 1: We show an example of the Lagrangian re-
laxation of the RGBD image matching in Fig. 2. In this
example, we have 85 overlapping candidate regions in the
first RGBD image and 94 candidate regions in the second
RGBD image. We construct the integer linear formulation
using the proposed method. We use 1536 covering indi-
cator variables. We first directly solve the linear program
relaxation that replaces the binary variable constraints with
the [0,1] bounds. The solution gives the integer values for
all the binary variables and thus gives the global optimum

of the mixed integer problem. We illustrate the region se-
lection and correspondence in Fig. 2(e, f), in which regions
with the same color are matched. We construct the pro-
posed Lagrangian relaxation of the problem. In the subgra-
dient method, initially all the elements in A are set to 9500
and this makes most of the coefficients in ¢I’ — AT B to be
negative. Minimizing problem P1 is equivalent to solving
a min-cost bipartite matching problem corresponding to the
negative elements in ¢’ — AT B. In stage one, since all the
elements in ¢ — AT B are negative, all the regions in im-
age one and two take part in the min-cost matching. P2 is
then solved by assigning w the lower bound or upper bound
based on the coefficient sign. Then A is updated. Here we
use a fixed & = 100 to update A\. The negative coefficient
in ¢ — AT’ B becomes sparser and sparser as the iteration
goes on as Fig. 2(i) shows. Fig. 2(j, k) show the region se-
lection in the first and second image during the iteration. As
shown in Fig. 2(1) the energy of the Lagrangian relaxation
quickly increases and approaches the red line, which shows
the minimum energy of the linear relaxation. In fact, the
energy of the Lagrangian dual never equals the LP relax-
ation due to numerical errors. Lagrangian dual also gives a
matching configuration because it computes the matching in
z. The result is shown in Fig. 2(g, h). Note that the region
matching is close to but not the same as the LP solution.
However, this does not pose a problem because we only re-
quire the lower bound from the Lagrangian relaxation to be
tight enough in our branch and bound procedure.

2.4. Branch and bound

We first need to determine on what variables we gener-
ate the search tree branches. One apparent choice is that we
can branch on the matching variables z. However, there can
be huge number of z because it is a quadratic function of
the number of region candidates. We branch on the region
selection variables x and y on image one and two instead.
By fixing « and y to 1 or 0, we enforce that some regions
have to be part of the matching and some have to be ex-
cluded. This has a big advantage because their number is
much smaller than that of the matching variables.

The Lagrangian dual can still be computed efficiently for
each search tree node. Each tree node fixes some x and y
to 1 or 0, and introduces extra constraints Dz = d, where
matrix D is determined by z; = >, z; j and y; = >, 2i j,
and d is a vector of 1 and Os. If we treat this as a complicated
constraint, the Lagrangian dual of the search tree node is

rri%x{lggl[(cT ~AN'B+€"D)z+ (AN —eNyw—£Td)}y (1)
sit. Az < 1,0 <w < 1, and z is binary.

We can still decompose the problem into P1 and P2. P1 can
be reduced to a min-cost matching problem and P2 can be
solved by assigning the upper or lower bound. We use the
subgradient method to determine &, which is similar to how
we deal with \. For £, we update it using & <— § + 0¢(Dz —
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d), where 0 is a positive step size. Note that the Lagrangian
relaxation still gives the same bound as the linear program
relaxation of the original problem at each search tree node.

The branch and bound procedure is as follows. We get
the first feasible solution of the integer program and the up-
per bound from the z of the Lagrangian relaxation (w can
be determined from z to minimize the primal objective).
We branch on region variables based on the size of the re-
gion; the bigger ones have higher priority because they de-
termine more about the matching energy. After choosing a
variable to branch on, without losing generality, assuming
the variable to be z;, we generate two branches: one with
x; = 0 and the other with x; = 1. We then need to cal-
culate the lower bounds on both branches. The Lagrangian
relaxation of the modified optimization can still be com-
puted efficiently by using min-cost bipartite matching. For
each branch, if the Lagrangian dual solution is primal feasi-
ble and satisfies the complimentary slackness condition, we
obtain a global optimal candidate on that branch. We update
the upper bound if the new candidate has smaller objective.
If the lower bound is bigger than the current upper bound,
the branch is pruned. The branch is also pruned if the dual
does not converge which means the primal problem is in-
feasible. If a branch is not pruned, it is active. During the
branching, we always select the active branch with the low-
est lower bound first. To speed up the subgradient method,
for each new search branch, the \ and £ corresponding to
the parent node constraints are reused as initial values. The
extra element in £ corresponding to the new constraint is
initialized to be 1. The branch and bound terminates if the
ratio of the gap between the lowest active lower bound and
current upper bound to the current upper bound is less than
0.001. The branch and bound converges fast, thanks to the
tight bound of Lagrangian relaxation. In a pair of RGBD
images with 500 candidates in each image, it takes tens of
seconds to find the global optimal solution.

3. Experimental results

Matching bags of regions on two RGBD images is a new
problem. There are no previous dedicated methods that
we can compete with. However, there are generic match-
ing methods that can be used. Bipartite perfect matching
has been widely used to match two sets of non-overlapping
regions. Here we try three different methods to generate
the non-overlapping or near non-overlapping regions of an
image: the graph based method [16], k-means on normals
to extract planar patches, and approximate convex shape
method [8]. We also compare the proposed method with a
greedy approach, which always matches the pair of regions
with the lowest matching cost and small overlap with the
already chosen ones in both the source and target images.
Such a greedy scheme does not guarantee to give the global
optimal result because our problem does not have optimal
substructure.

Figure 3. Row 1: Source and target images (left two) and region
matching results (right two) of the proposed method. Same col-
ors indicate matched regions. Row 2 and 3: Pixel level matching
results using PatchMatch [7]. Row 4: Bipartite matching results
using PatchMatch on k-means segmentation (left two) and graph
based segmentation [16] (right two). Row 5: Greedy method re-
sults using local matching cost of this paper (left two) and Patch-
Match costs (right two).

—

Figure 4. Row 1: Source and target images (left two) and the re-
gion matching results (right two) of the proposed method. Row 2:
k-means superpixels on source and target images (left two) and bi-
partite matching results (right two). Row 3: Superpixels on source
and target images (left two) using [16] and bipartite matching re-
sults (right two).

Fig. 3 Row 1 shows the matching results of the proposed
method on two RGBD images. The region proposals are
from successively merged k-means superpixels [8] and su-
perpixels from graph based method [16]. The matching is
successful even with the cluttered scene, partial occlusion
and objects with little texture. Pixel level matching using
PatchMatch [7] is shown in Fig. 3 Rows 2 and 3. The pixel
level matching result is noisy and does not give the target
region directly. We test whether bipartite matching and the
greedy method can be used to aggregate the PatchMatch
results by using large regions. Bipartite matching uses su-
perpixels from k-means and graph based method [16]. We
use the same set of parameters to extract superpixels in the
source and target images. We use the average PatchMatch
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Figure 5. Comparison with bipartite matching on the ground truth
dataset. Row 1: Source and target image pairs. Row 2: Matching
results of the proposed method. Row 3-5: Matching results of
bipartite matching on k-means superpixels (Row 3), superpixels
using [16] (Row 4) and regions from [8] (Row 5).

dataset. Row 1: Source and target image pairs. Row 2: Matching
results of the proposed method. Row 3: Matching results of the
greedy method.

@ =i L il L

[ This paper | BipartiteC [ BipartiteS [ BipartiteK [ Greedy

PrimeSense | 06164 | 05396 | 04046 | 03617 | 0.2502

NYU Kinect [ 0.5997 [ 0.5179 [ 0.4416 [ 0.2844 [ 0.3348
Table 1. Average matching scores in ground truth test.

[ This paper | BipartiteC [ BipartiteS | BipartiteK | Greedy

PrimeSense [ 10.0185 [ 9.6414 [ 38.9781 [ 39.0808 [ 51.7643

NYU Kinect | 115423 | 103429 | 489713 | 470032 | 45.0239

Table 2. Average number of matching pairs.

cost from source to target regions as the local region match-
ing cost. As shown in Row 4 of Fig. 3, bipartite match-
ing fails to match the two images. The greedy method uses
the same region candidates as the proposed method. Fig. 3
Row 5 shows the greedy method results using the same lo-
cal matching cost as the proposed method and the Patch-
Match matching cost respectively. In both cases, the greedy
method fails. The proposed method gives superior results.

Fig. 4 shows another comparison result. Row 1 shows
the matching result of the proposed method. Row 2 and 3
show bipartite matching results using the same local match-
ing cost as the proposed method. Row 2 shows the bipartite
matching results with k-means superpixels and Row 3 with
the graph based method superpixels [16]. The graph based
method uses a linear combination of the color image and
depth image to extract superpixels. The inconsistency of
region partition using existing segmentation methods is the
main reason that bipartite matching approach gives inferior
result. Our method is able to handle a large set of overlap-
ping region proposals in the global optimization and gives
more reliable results.

We further test the performance of the proposed method
on ground truth data. To simplify the ground truth extrac-
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Figure 7. Region matching score curves for PrimeSense dataset
(a) and NYU Kinect dataset (b). Proportions of tests with scores
above different thresholds are shown. BipartiteC uses regions from
[8], BipartiteS uses regions from [16] and BipartiteK uses regions
from k-means.

0.4
Matching score

[ This paper | BipartiteC [ BipartiteS [ BipartiteK [ Greedy

PrimeSense 0.9007 0.8607 0.8110 [ 0.8841 0.6274

NYUKinect | 09258 | 08230 | 07385 | 09147 | 06171

Table 3. Average coverage.
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Figure 8. Comparison with hierarchical tree matching [3] on
PrimeSense (a) and NYU Kinect (b) datasets. Proportions of tests
with scores above different thresholds are shown. The tree method
uses regions from two methods. In case one (C1), regions are from
3D normal k-means, and in case two (C2) regions are from [16].
For the tree method, two matching scores S1 and S2 are computed
in each case.

Matching score

[ This paper | SI-CI_| S2-CI [ SI-C2 | S2-C2
PrimeSense 0.6164 | 0.3310 [ 0.3872 [ 0.3390 [ 0.3539
NYU Kinect | 05997 | 03582 | 0.3747 | 0.3324 | 0.2989
Table 4. Average matching scores. Comparison with tree matching
method [3].

tion, we apply the proposed region matching method on
rigid scenes, whose pointwise matching can be reliably ob-
tained by estimating the rigid transformation of a whole
scene using SIFT features on color images and RANSAC
on 3D point clouds. The region matching methods do not
have the knowledge of rigid scene and do not use the neigh-
bor smoothing constraints in the matching. In this condi-
tion, matching bags of regions in two RGBD images of a
rigid scene has the same difficulty as matching a dynamic
scene. It is thus a sufficient test to show how different meth-
ods compare.

The ground truth dataset includes 627 image pairs from
NYU V2 Kinect raw dataset [13] and 594 image pairs from
our own PrimeSense dataset. In NYU dataset the camera
movement is mostly panning and in ours the camera rotates
around a target scene. Pairs of images are extracted from
videos. These images are 50 frames apart in our Prime-
Sense dataset and 30 frames apart in the NYU raw video
dataset. Sample comparison results of the proposed method
against bipartite matching and the greedy method are shown
in Fig. 5 and 6. The quantitative results are shown in Fig. 7
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Figure 9. Sample results on more challenging dataset. These image pairs are extracted from five videos and images are 100 frames apart.
These matching tests involve deformable and articulated human subjects, moving rigid objects, and occlusion between objects.

and Table 1, 2 and 3. We quantify the matching with a score,
which is defined to be a weighted score of matched regions
from source to target image. The region matching score
is computed as the ratio of the projected source region in-
tersection with the matched target region to the projected
region union with the target region. The weights are the ra-
tios of the selected region areas to total area of the selected
regions in source image. We compute the weighted sum of
the region matching scores to obtain the matching score for
an image pair. In ideal case, a perfect matching score is 1.
In practice, the score is in [0,1]. As shown in Fig. 7 and Ta-
ble 1, the proposed method has higher matching score than
the bipartite matching and the greedy method. The number
of selected regions in matching is shown in Table 2. Ta-
ble 3 shows the coverage of matched regions in source and
target images from different methods. The average region
coverage of the proposed method is higher than competing
methods.

We also compare with the hierarchical tree matching
method [3]. We use two methods to generate region hier-
archical trees. In case one (C1), regions are from k-means
of 3D normals, and in case two (C2) regions are from [16];
we use successive merging method in [8] to generate region
trees. We compute region matching scores for tree matching
in two settings: S1 for matching non-overlapping regions at
source and target tree levels with the largest mean match

pair similarity [3] and mean concavity less than 0.5 meter,
and S2 for all matched regions with similarity greater than
half the largest similarity. The comparison results are shown
in Fig. 8 and Table 4. Our method gives higher matching
scores than the tree method. Tree matching methods require
regions to have a hierarchy; our proposed method allows
any region proposals.

More experimental results sampled from 259 image pairs
with 100 frames apart in five videos are shown in Fig. 9.
These tests involve more challenging cases. Different tar-
gets including human subjects are involved. Our proposed
method gives reliable results. Our method is also fast. Typ-
ical running time to solve the branch and bound problem
on an image pair takes a few seconds. In this paper, we
use simple color histogram to quantify the region similar-
ity. The failure cases are mostly due to brightness and color
changes of captured images. By using better region appear-
ance and shape descriptor, the performance of the proposed
method can be further improved.

4. Conclusion

We study the new problem of matching bags of regions
in RGBD image pairs. We propose an effective mixed in-
teger linear formulation. A fast dual method is proposed to
compute the lower bound. We obtain the global optimal so-
lution using branch and bound. Our proposed method gives
promising results on challenging test images.
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