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Abstract

Most conventional structure-from-motion (SFM) tech-

niques require camera pose estimation before computing

any scene structure. In this work we show that when com-

bined with single/multiple homography estimation, the gen-

eral Euclidean rigidity constraint provides a simple formu-

lation for scene structure recovery without explicit camera

pose computation. This direct structure estimation (DSE)

opens a new way to design a SFM system that reverses the

order of structure and motion estimation. We show that this

alternative approach works well for recovering scene struc-

ture and camera poses from sideway motion given planar

or general man-made scenes.

1. Introduction

Structure from motion (SFM) is a classical problem in

computer vision and has been studied actively for decades.

In recent years, driven by the increasing demands of in-

dustrial applications such as navigation, augmented reality,

robotics and film/game production, significant progresses

have been made that advance the SFM techniques in terms

of the system reliability and scalability [21, 24]. Almost

all modern SFM systems start with relative pose estima-

tion from feature correspondences (e.g. SIFT[15]) between

two [8, 19] or three views [20, 22]. These relative poses

will be merged into a global coordinate system afterwards

[24, 13, 17, 4, 10]. The scene structure is then computed and

refined together with all camera parameters, e.g. by bundle

adjustment (BA) [29]. Therefore, reliable and accurate rel-

ative pose estimation is critical for a robust SFM system.

However, to compute relative poses reliably is a non-trivial

task. Most techniques suffer from instability caused by pla-

nar scenes [19], which is commonly seen in man-made en-

vironments. As a result, a separate process for detecting

a dominant homography is often adopted in SFM systems.

On the other hand, planar structure by itself actually gives

a strong geometric constraint and can be utilized for better
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Figure 1. The proposed DSE utilizes the homography induced

depth ratio and Euclidean rigidity constraint to estimate the struc-

ture directly without camera pose recovery. (a) Geometric in-

terpretation of homography decomposition. (b) Homography in-

duced depth ratios λi and λj together with the rigidity constraint

give the estimate for αij .

reconstruction quality [3, 11, 32].

Besides this well-known limitation of state-of-the-art

SFM systems, there is also a technique ‘void’ in the gen-

eral methodology of SFM as pointed out by Li [14]. In

almost all traditional SFM methods, camera motion esti-

mation always comes first, then followed by 3D structure

computation1. The work by Li [14] is among the earliest to

propose an actual implementation that bypasses the motion

estimation.

While appreciating the rationales behind the traditional

SFM schemes, such as theoretical elegance and practical

effectiveness, we are interested in the feasibility and advan-

tage of a structure-first approach for practical SFM systems.

In fact, we observed that, with known intrinsic camera pa-

rameters, the ratio of the depths of a 3D point in two differ-

ent views can be directly inferred from a homography re-

lating the two image points (see Fig. 1(b) and Section 3.1).

Furthermore, the Euclidean rigidity constraint implies that

the Euclidean distance between two 3D points is invariant

under a rigid body transformation. When combined with

the aforementioned homography induced depth ratio across

different views, we can derive a simple equation from the

rigidity constraint to solve for the relative depths of two 3D

points uniquely given at least three different views, i.e. the

1Tomasi-Kanade factorization is an exception which recovers structure

and motion simultaneously.
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scene structure can be determined directly up to a common

scale from three calibrated images (see Fig. 1(b) and Sec-

tion 3.2). Note that although our method involves homogra-

phy estimation, we do not require the points to share the ho-

mography, nor do we estimate any camera parameters from

the homography matrix. For easy reference, we term this

approach as direct structure estimation (DSE), and will use

it hereinafter.

To evaluate the potential of DSE for a practical SFM sys-

tem, we further recover the camera parameters from the esti-

mated structures. Specifically, we compute the scene struc-

ture in the camera view of each image, and obtain their rel-

ative poses by a simple 3D rigid body transformation [2, 5].

The estimation can be further refined using non-linear op-

timization, e.g. bundle adjustment (BA) [29]. We find the

proposed approach works particularly well for sideway mo-

tion regardless of the number of available planar structures.

This is actually a desired property in practice, since sideway

motion is good for structure computation and is prevailing

in data capturing for 3D reconstruction.

2. Related work

Our work can be considered as one example of

‘structure-first’ SFM techniques. As compared to the rich

body of SFM literature, this is a relatively ‘void’ space.

Early works have speculated the feasibility for obtaining

general 3D structure without explicitly computing camera

motions (e.g. [7, 31]). Li [14] has proposed for the first

time an actual implementation for such a scheme based on

a graph rigidity theory, where a subset of the inter-point Eu-

clidean distances are computed before embedding the ac-

tual coordinates of the 3D points. However, to extend such

a scheme to a robust and scalable SFM system is not obvi-

ous. Inter-point distance has been used in early vision works

to derive multi-view invariants (e.g. [7, 30]). Our method

also utilizes the invariance of the inter-point distance under

rigid body transformations to derive the constraints. Tardif

et al. [26] used the factorization framework and proposed

a structure basis constraint that can recover scene structure

first mainly for affine cameras. Aliaga et al. [1] proposed a

structure estimation scheme by eliminating motion parame-

ters from the SFM formulation, but it requires initialization

for the resulting nonlinear bundle adjustment problem.

It is well known that prior knowledge about the scene

planes can greatly facilitate the 3D reconstruction problem.

Plane-based camera self-calibration and 3D reconstruction

from uncalibrated views have been well studied in the litera-

ture [28, 11, 3]. Zhou et al. [32] proposed a fully automatic

SFM system based on dominant planes detected in the scene

from an uncalibrated video sequence. While these works

deal with uncalibrated images and aim to recover the cam-

era motion and scene structure simultaneously from mutli-

ple views, we show the feasibility to directly estimate scene

structure from image correspondences related by homogra-

phies and its readiness as a component for a general scalable

SFM system.

Our DSE method involves robust multiple homography

detection, which is a challenging and active research topic

[27, 9]. The objective of the classic problem is to cluster

the image points such that they form a minimum number

of co-planar regions and each region accurately covers as

many points as possible. However, our objective is slightly

different from the classic problem statement. In fact, we

are not concerned whether the number of homographies de-

tected is optimal, and the points can have multiple homog-

raphy assignments simultaneously. This relaxation makes

our problem much easier and we propose a simple method

to achieve our goal.

We use three views as the basic building block for DSE.

The relative poses computed from the scene structures are

readily integrated into existing SFM systems such as [10,

18]. In particular, we use the open source code provided by

Jiang et al. [10] to register the cameras globally and apply

BA to obtain the final reconstruction.

3. Direct structure estimation

In the following, we first introduce the structure con-

straint induced by homography for calibrated cameras. This

constraint gives us the knowledge of the ratio between the

depths of a 3D point seen from two different views. Then,

we shall use this depth ratio to derive the equation for solv-

ing the relative depths of two 3D points observed in the

same view. In general, there are two valid solutions to the

equation we derived. Hence, we propose to use a third view

to resolve this ambiguity and produce a unique solution for

every pair of 3D points. We also design a robust scheme to

harvest the scene structure from all such pairwise estima-

tions, which are usually contaminated by noise and error.

3.1. Homography induced structure constraints

We begin with the formal proof of the structure con-

straint induced by homography.

If a pair of corresponding calibrated points p =
(x, y, 1)T and p′ = (x′, y′, 1)T in images I and I ′ are re-

lated by a homography H, we have the following equation

λp′ = Hp, (1)

where λ is a scalar.

Suppose H is scaled2 such that H = R + tnT

dπ
, where

R and t denote the camera rotation and translation between

the two views, and π is the plane defined with (n, dπ) in the

camera coordinate system of view I (see Fig. 1). Here, n

denotes the normal of the plane and dπ denotes the distance

of the plane π from the camera center of view I .

2The scaling factor is given by the second largest singular value of H,

see [16].



Proposition: Let d and d′ denote the depths of a 3D point X

in view I and I ′, with projected 2D points p and p′, respec-

tively. Then we have the equality λ = d′

d
.

Proof. Let X denote a 3D point on plane π, and satisfying

the plane equation XT n − dπ = 0. The camera projection

matrices of view I and I ′ are given by [I 0] and [R t], re-

spectively. Given the depth d (d′) of X in view I (I ′), we

have

dp = X, (2)

d′p′ = RX + t. (3)

Substitute Eq. (2) to the plane equation and Eq. (3):

1

d
=

nT p

dπ
, (4)

d′

d
p′ = Rp +

t

d
. (5)

Combine Eq. (4) and Eq. (5), we have

d′

d
p′ = (R +

tnT

dπ
)p = Hp,⇒ λ =

d′

d
. (6)

3.2. Relative depth recovery

In the following, we show that the homography induced

depth ratio together with the Euclidean rigidity constraint

lead to a simple formulation for solving the relative depths

of 3D point pairs.

Given two pairs of corresponding points (pi,p′

i) and

(pj ,p′

j), we denote their respective depths in view I and I ′

as (di, d
′

i) and (dj , d
′

j). According to the Euclidean rigidity

constraint, the distance between the 3D points Xi and Xj

does not change under any rigid body transformation, i.e.

‖d′ip
′

i − d′jp′

j‖ = ‖dipi − djpj‖.

Given the depth ratio λi =
d′

i

di
and λj =

d′

j

dj
obtained

from the respective homography relating each pair of the

corresponding points, with simple manipulation, we can ob-

tain the following equation:

‖λi

di

dj
p′

i − λjp′

j‖ = ‖
di

dj
pi − pj‖. (7)

Let α = di

dj
, we arrive at the following quadratic equa-

tion about α,

Aα2 +Bα+ C = 0,where (8)

A = ‖λip
′

i‖
2 − ‖pi‖

2,

B = −2(λiλjp′T

i p′

j − pT
i pj),

C = ‖λjp′

j‖
2 − ‖pj‖

2.

We can easily solve the above equation and obtain up to two

valid solutions for α. Equivalently, we obtain the relative

depths of the corresponding 3D points Xi and Xj in view I .

Given a third view I ′′, there are up to two additional so-

lutions for α, and we can select the one that satisfies both
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p kp
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Figure 2. Structure estimation from two sets of relative depths

(best viewed in color). (a) Relative depths αki computed using

point pi as reference. (b) Relative depths αkj computed using

point pj as reference. (c) The final structure is computed as the

average of the scaled relative depths.

equations and is positive. In fact, we directly solve the fol-

lowing minimization problem to obtain the optimal solu-

tion3,

αij = argmin
α

∣

∣A1α
2 +B1α+ C1

∣

∣+
∣

∣A2α
2 +B2α+ C2

∣

∣ .

(9)

We use αij to denote the estimated relative depth ratio be-

tween Xi and Xj (Fig. 1 (b)). Here, (A1, B1, C1) and

(A2, B2, C2) are coefficients computed from the view pair

(I, I ′) and (I, I ′′), respectively.

In fact, Eq. (9) minimizes the average difference between

the Euclidean distance between Xi and Xj measured in

camera view I , I ′ and I ′′, respectively.

3.3. Structure estimation

So far we have shown how to obtain the relative depths

of two 3D points given their correspondences and associ-

ated homographies across three views. Ideally, one can fix

the depth of an arbitrary point, and compute the rest to ob-

tain the scene structure up to a global scale. In reality, the

results will obviously be biased by the chosen reference

point. Since the computation for α is simple and can be

easily parallelized for different 3D point pairs, we do this

exhaustively for all pairwise combination of 3D points that

find correspondences across three images.

Now we denote the set of image points in view I that

has correspondences in the other two images as S =
{p

1
,p

2
, · · · ,pN}, and N is the total number of such points.

Collectively, for each point pi ∈ S with its depth fixed as

di = 1, the depths of all the points in the same view are

given by αki = dk

di
. If there is zero noise in the data, we

shall have

{αki} = βji{αkj}, ∀k ∈ [1, N ] , (10)

meaning that each set of depths only differs by a global scal-

ing factor (see Fig. 2). In the presence of noise, each pair

of (αki, αkj) will give a different estimate for βji. There-

fore, we compute the average scaling factor for each set of

depths using RANSAC [6] (the threshold is set as 1% of the

expected value of βji). The average depth for each point

pi is computed similarly after applying the scaling factor to

each set of depth estimation (Fig. 2(c)).

3The minimization always gives a real solution while the original equa-

tion may have no real solutions.



(a) (b) (c)
Figure 3. Multiple homography detection and structure compu-

tation. From top to bottom we show the results for the dataset

‘castle-P30’, ‘fountain-P11 and ‘Herz-Jesu-P25’ [25], respec-

tively. (a) The representative co-planar point clusters. Points be-

longing to the same homography are marked in the same color. (b)

The recovered depths colored according to their relative values.

Red means near and blue means far. (c) Scene structure viewed in

3D.

In practice, we also compute α′

ij for views I ′, and prop-

agate the values to view I using the point depth ratio across

views given by homographies as α̃ij = α′

ij
λj

λi
. The same

computation is repeated for view I ′′. We take the average

of all three α̃ij as the final estimate for each αij . We dis-

card the estimate for αij if the standard deviation of α̃ij is

large (e.g. 1% of the expected value) for better robustness.

Figure 3(b) and (c) show examples of the typical structures

we recover. Without estimating any camera motion parame-

ters, we nicely recover the dominant planar structures in the

scene. The orthogonal relationship between the two wall

facades in ‘castle-P30’ is well preserved.

3.4. Multiple homography estimation

Before applying DSE, we need to detect the presence of

homographies and compute each homography transforma-

tion from image correspondences. This is a typical multi-

model fitting problem, and there are sophisticated algo-

rithms proposed for this task, e.g. [27, 9]. However, our

requirements are slightly different and relatively relaxed as

compared to the classic problem statement. First, we do

not care whether the number of homographies discovered is

optimal so long as each point cluster truely conforms to a

homography. Second, each image point can be assigned to

different homographies. This is in fact desired in our case,

since each homography fitting will give an estimate to the

depth ratio of a point across two views. We also like to

point out that generally local planes exist everywhere and

a homography is also a good approximation to many ge-

ometrically non-planar structures if fitted locally. There-

fore, we adopt a simple ‘fit-and-grow’ approach by sweep-

ing through evenly spaced image regions for homography

detection. Recent work [23] also used a similar strategy to

generate plane hypotheses for stereo matching.

In particular, we first divide the image plane of the ref-

erence view into overlapping cells (e.g. 50% overlap) with

size L × L4. Then we apply RANSAC to generate a ho-

mography hypothesis within each cell and use all the cor-

respondences found in the second image for inlier/outlier

testing (we set the threshold as 2 pixels for image resolu-

tion of 1600× 1200). We accept a homography hypothesis

as valid only if the number of inliers exceeds 10. For each

successful hypothesis, we repeat hompography fitting using

all inliers and perform inlier/outlier testing on all correspon-

dences until no more new inliers are found. We optimize the

final homography by minimizing the Sampson’s error. By

performing the ‘growing’ step, non-local inliers can also be

aggregated. This is useful for spatially unconnected but ge-

ometrically co-planar surfaces or bulding facades. We show

example results of the proposed technique in Fig. 3 (a).

In our case, an image point can participate in more than

one homography fitting. Typically, the number of homop-

grahies fitted for each image point ranges from 0 to 6 in the

examples we tested. The difference between the individual

depth ratio estimate and the averaged value is usually less

than 1%. Since homographies estimated with more points

are often more accurate and stable, we weight each λ by the

number of inliers used for its homography estimation, and

take the weighted average for our computation.

4. Integration with SFM systems

An immediate application of DSE is to serve as a build-

ing block for a general SFM system. Given a collection of

images, we can apply DSE to every view triplet with suffi-

cient overlap (e.g. by considering the number of common

correspondences found between them). The relative pose

between views within a triplet can be obtained by comput-

ing a 3D rigid transformation between the scene structure

recovered for each view. These relative poses are readily

fed into SFM systems such as [18, 10]. We will describe

each step in detail in the following.

Once we obtain the scene structure from homography de-

tection and DSE, we can recover camera poses as a side

product by 3D rigid body transformation using SVD [2, 5].

We did not use the standard camera absolute pose algorithm

given 2D-3D correspondences (e.g. EPnP [12]) because the

PnP algorithm also suffers from instability in the presence

of a single planar structure. In fact, we find the 3D rigid

body transformation gives comparable results on camera

pose estimation in general. In practice, for the best results,

we can use these initial camera poses to triangulate the re-

maining image correspondences that are not recovered in

4The cell size L is given as 1/10 of the larger dimension of the image.



Figure 4. Camera and scene setup for synthetic experiments.

the DSE step and refine the camera poses by BA.

Given more than three images, we first recover the rel-

ative camera poses from the computed scene structure for

each view triplet. We then feed these relative poses to the

algorithm proposed by Jiang et al. [10] and produce the 3D

reconstruction for multiple images.

5. Experiments

We evaluate DSE with both synthetic data and real data

to fully understand its behavior and potential in SFM ap-

plications. We compare DSE with three representative cali-

brated relative pose algorithms on scenes with synthetic pla-

nar structure(s). Namely, we choose the direct homography

decomposition algorithm (HD) [16], the 5-point algorithm

(2V5P) for epipolar geometry [19] and the four-point al-

gorithm (3V4P) [20] for trifocal tensor. For simplicity, we

only test HD for the case of a single planar structure.

For synthetic experiments, we follow the conventional

set up as described in previous literature, e.g. [19, 20]. As

shown in Fig. 4, the first camera is oriented to align with

the world coordinate system. The second camera is placed

at 0.1 units away from the first camera, and the third camera

is sitting in the middle of the baseline between the previous

two cameras. The direction of camera translation is con-

trolled by the angle θ, e.g. θ = 90◦ corresponds to sideway

motion. The second and the third camera is rotated such

that its optical axis passes through the centroid of the im-

aged points, with the x-axis remaining parallel to the x-z

plane and the y-axis pointing to the same half-space as the

world y-axis. The horizontal field of view of the camera

is 45◦ and the image resolution is 352 × 288 in pixels. We

perturb the image coordinates by zero-mean Gaussion noise

with different standard deviations.

The scene points are generated within the view frustum

of the first camera with a minimum depth of 1 unit and scene

depth of 0.5 units. In the case of planar scene, the plane is

generated such that it passes through the center of the scene

frustum and its normal deviates from the z-axis by an angle

of 0 to 30 degrees. In the case of multiple planes, the plane

orientations are generated similarly to the single plane case.

The location of each plane is determined by assigning an ar-

bitrary point in the scene frustum to it. Randomly sampled

scene points are arbitrarily projected to the visible parts of

these planes. We generate in total five different planes for

the test. Note that it is not easy to simulate realistic piece-

wise planar scenes without introducing bias. As we are only

interested in the algorithm behavior of DSE, perfect cluster-

ing of the points is given for homography fitting in all cases.

All the parameters involved in our computation are still es-

timated from the given noisy data.

5.1. Accuracy and stability of DSE

We test the accuracy and stability of DSE over differ-

ent camera translation directions under varying noise levels.

Among all the translation directions, forward and sideway

motion are two special motions that are often encountered

during data capturing. However, as a rule of thumb, for the

purpose of reconstruction, forward motion is typically not

recommended since the triangulation of scene points can be

extremely sensitive to image noise and small camera mo-

tion errors. This disadvantage to structure recovery was also

observed in our experiments, however, with an alternative

explanation given later. Therefore, the performance of the

algorithm on sideway motion is of more importance for the

reconstruction purpose in practice. We use the publically

available source code for 2V5P, and our own implementa-

tion of the 3V4P and HD for the comparison. Since HD

generally gives up to two valid decompositions [16], we dis-

ambiguate the results by finding the common plane normal

recovered by the two homographies between the reference

view and the other two views.

The comparisons of camera pose estimation accuracy are

given in Fig. 5 and Fig. 6. Each data point in these fig-

ures is computed over 100 trials. The relative rotation er-

ror and translation error in degrees are shown in the first

two columns respectively. These errors are computed over

‘inlier’ pose estimates where the relative rotation error is

smaller than 3◦. The ratio of the camera pose estimates

with gross error is given in the third column. By doing this,

we have a better understanding of how good an algorithm

is at obtaining the correct solution and its actual numerical

stability to image noise.

We found that both 2V5P and 3V4P are very unsta-

ble with planar scenes in the presence of image noise

(Fig. 5(c)), especially in the case of sideway motion

(Fig. 5(a)). On the other hand, DSE constantly produces

the best results for sideway motion regardless of the num-

ber of available homographies (Fig. 5(a) and Fig. 6(a)). HD

shows good performance for sideway motion when the im-

age noise is low, but correct plane normal selection becomes

more difficult as image noise increases. The performance of

DSE on forward motion, however, is not on-par with its per-

formance on sideway motion. It seems the algorithm has

difficulty in solving for the correct structure stably when

the image noise becomes large. We observe the same be-

havior with HD. With a more careful inspection, we find

that the displacement of the image points can often be well

explained by a homography induced by a frontal parallel
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Figure 5. Relative rotation error and translation error for scene with a single plane over different translation directions. (a) Sideway motion.

(b) Forward motion. (c) All directions with a noise level of 0.5 pixels.

plane when the camera undergoes forward motion with a

relatively small baseline. All the outlier motions produced

by DSE are resulting from this particular ‘false structure’.

We give such an example in Fig. 7(a).

When the scene contains multiple planes, 2V5P gener-

ates good results for all kinds of motions and constantly

outperforms 3V4P. DSE gives the best results for sideway

motion, yet it still suffers from structure confusion for for-

ward motion. The reason is similar to the single plane case.

The current DSE computes the optimal relative depth α

independently for each point without considering the con-

sistency with other points. We believe this global consis-

tency is the key to resolve the structure confusion in for-

ward motion. Therefore, an interesting future direction is to

consider the consistency of the relative depths among all the

points and choose the configuration that minimizes the re-

projection error over all the image observations. Neverthe-

less, we can see from Fig. 5(c) and Fig. 6(c) that the com-

fortable operating zone for the current DSE ranges from 50◦

to 90◦ regardless of the type of scene structure. We consider

this as a complementary algorithm behavior as compared to

the standard relative pose algorithms such as 2V5P.
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Figure 7. (a) An example of the recovered frontal parallel ‘false

structure’ (colored in red) given by DSE when camera undergoes

forward motion. The true structure is colored in blue. (b) The

structure estimation error of DSE for different types of camera

motion (image noise level is 0.5 pixels).

5.2. 3D reconstruction

When integrating DSE into a SFM system such as [10],

we need to remove false triplet reconstructions. Here, triplet

verification obviously does not work since the false struc-

ture and camera poses usually consistitute an ambiguous so-

lution. Instead, we perform pairwise verification. For each

view pair, we can compare the relative pose estimates be-

tween them obtained from different view triplets to identify

outliers. We simply consider a relative pose (and hence the

triplet it comes from) as an outlier if its minimum rotation
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Figure 6. Relative rotation error and translation error for scene with multiple planes over different translation directions. (a) Sideway

motion. (b) Forward motion. (c) All directions with a noise level of 0.5 pixels.

difference from at least two other solutions is greater than

3◦. We test the DSE-based SFM system with six real image

sequences. We use the benchmark dataset ‘fountain-P11’,

‘Herz-Jesu-P25’ and ‘castle-P30’[25] to provide a quantita-

tive evaluation. The feature correspondences are computed

using SIFT [15]. The view triplets used for the computa-

tion are generated by first connecting each image with three

other images with most correspondences, and then collect-

ing all the triplets formed by these view pairs. The results

are reported in Table 1. We test our algorithm with both

ground truth calibration (GT) and calibration read from the

Exif tags (Exif). Here, R3err and t3err denote the average

relative rotation error and translation error in degrees within

view triplets, respectively. The average error in absolute ro-

tation (in degrees) and camera position (in cm) before the

final BA are given by Rerr and cerr, respectively. The ab-

solute camera position error after the final BA is given by

cerr (BA). The reconstruction obtained with DSE(SVD) in

Table 1 using Exif calibration after the final BA is visual-

ized in Fig. 8. For reference purpose, we also report the

results obtained using [10].

Interestingly, we produce comparable results to [10] on

these benchmark datasets even without applying three-view

BA. In particular, we obtain a better camera pose initializa-

(a) (b) (c)
Figure 8. Reconstruction results for benchmark datasets [25] using

Exif information (without three-view BA). (a) fountain-P11. (b)

Herz-Jesu-P25. (c) castle-P30.

tion for ‘castle-P30’. This dataset contains images domi-

nated by planar building facade and the 5-point algorithm

produces large errors for relative pose estimation between

those images pairs. In general, three-view BA should be ap-

plied to the initial camera poses obtained from DSE(SVD)

to ensure the best initialization for the final BA.

We compare two more 3D reconstructions obtained us-

ing DSE-based SFM (with three-view BA) and the original

5-point based method in [10] visually in Fig. 9. The ‘Street’



fountain-P11 #Images #Triplets
GT Exif

R3err t3err Rerr cerr cerr (BA) R3err t3err Rerr cerr cerr (BA)

DSE(SVD)

11 23

0.205 0.154 0.25 1.7 0.28 0.53 0.56 0.74 4.4 1.1

DSE(BA3) 0.09 0.066 0.021 0.9 0.28 0.32 0.49 0.45 7.2 1.1

LinearSFM[10] 0.13 0.23 0.07 24 0.27 0.35 0.49 0.48 3.4 1.1

Herz-Jesu-P25 #Images #Triplets
GT Exif

R3err t3err Rerr cerr cerr (BA) R3err t3err Rerr cerr cerr (BA)

DSE(SVD)

25 120

0.1 0.31 0.07 4.6 0.6 0.27 0.71 0.5 6.9 5.6

DSE(BA3) 0.057 0.17 0.06 1.2 0.6 0.17 0.47 0.39 6.1 5.6

LinearSFM[10] 0.14 0.49 0.13 3 0.6 0.27 0.71 0.44 8.8 5.5

castle-P30 #Images #Triplets
GT Exif

R3err t3err Rerr cerr cerr (BA) R3err t3err Rerr cerr cerr (BA)

DSE(SVD)

30 108

0.35 1.21 0.91 45 10 0.56 2.48 1.71 158 20

DSE(BA3) 0.22 0.62 0.27 104 10 0.35 1.24 0.96 162 20

LinearSFM[10] 0.41 1.4 0.7 75 10 0.56 1.75 2.28 206 22

Table 1. Quantitative evaluation with benchmark datasets. ‘GT’ stands for ground truth calibration and ‘Exif’ stands for Exif calibration.

‘BA3’ means three-view bundle adjustment.

(a)

(b)
Figure 9. Reconstruction results for (a) Street and (b) Building.

Below example images from each data sequence, we show recon-

structions obtained by our DSE-based method on the left and the

ones obtained by [10] on the right.

Figure 10. Example input images and the reconstruction for Shop-

house.

sequence has 38 images and we collect 105 triplets by con-

necting neighboring images according to the time stamps to

avoid confusion caused by repetitive structures. The ‘Build-

ing’ example has 67 images and we collect 193 triplets.

We use the same set of triplets for both methods. We can

clearly see from Fig. 9 that due to noisy relative pose esti-

mation by the 5-point algorithm, [10] produced misaligned

reconstructions. The DSE-based SFM gives much better re-

sults, though it also suffers from poor relative pose estima-

tion on a few view triplets of the ‘Building’ example. This

is most likely due to the presence of near forward motion

with small baselines. We also show a reconstruction of the

‘Shophouse’ sequence containing 122 images obtained by

our DSE-based SFM in Fig. 10.

Our current unoptimized Matlab implementation of DSE

takes about 8 seconds on a 2.53Hz CPU for a typical image

triplet of size 1600 × 1200 dominated by piecewise planar

scenes. Since all the computation involved in DSE is light-

weight, speed-up is trivial.

6. Conclusion and future work

In this work, we show that given three calibrated images

and scenes with detectable planes, we can directly estimate

the structure without computing any camera motion param-

eters. This interesting discovery leads to a SFM scheme that

is built on the reversed order, i.e., compute the structure first

and then followed by pose estimation. Experimental results

demonstrated that this structure computation is especially

well suited for sideway motion regardless of the type of

scene structures. This complementary algorithm behavior

as compared to conventional relative pose algorithms opens

a new way to think about the design of a robust SFM system.

We believe there are ample rooms for improvement of the

DSE-based SFM scheme. For instance, one can improve its

performance by considering solving the relative depth glob-

ally, and utilizing lines for homography detection and fitting

when dealing with indoor environments. Last but not least,

combining DSE and conventional relative pose estimation

for maximum stablility and versatility is by itself an inter-

esting topic for investigation.



Acknowledgement

This study is supported by the HCCS research grant at

the ADSC from Singapore’s Agency for Science, Technol-

ogy and Research (A*STAR).

References

[1] D. G. Aliaga, J. Zhang, and M. Boutin. Simplifying the re-

construction of 3d models using parameter elimination. In

Proc. ICCV, pages 1–8, 2007. 2

[2] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares

fitting of two 3-d point sets. IEEE Trans. PAMI, (5):698–700,

1987. 2, 4

[3] A. Bartoli and P. Sturm. Constrained structure and mo-

tion from multiple uncalibrated views of a piecewise planar

scene. IJCV, 52(1):45–64, 2003. 1, 2

[4] D. Crandall, A. Owens, N. Snavely, and D. Huttenlocher.

Discrete-continuous optimization for large-scale structure

from motion. In Proc. CVPR, pages 3001–3008, 2011. 1

[5] D. W. Eggert, A. Lorusso, and R. B. Fisher. Estimating 3-

d rigid body transformations: a comparison of four major

algorithms. Machine Vision and Applications, 9(5-6):272–

290, 1997. 2, 4

[6] M. A. Fischler and R. C. Bolles. Random sample consen-

sus: a paradigm for model fitting with applications to image

analysis and automated cartography. Communications of the

ACM, 24(6):381–395, 1981. 3

[7] N. M. Grzywacz and E. C. Hildreth. Incremental rigid-

ity scheme for recovering structure from motion: Position-

based versus velocity-based formulations. J. Opt. Soc. Am.

A, 4(3):503–518, 1987. 2

[8] R. Hartley. In defense of the eight-point algorithm. IEEE

Trans. PAMI, 19(6):580–593, 1997. 1

[9] H. Isack and Y. Boykov. Energy-based geometric multi-

model fitting. IJCV, 97(2):123–147, 2012. 2, 4

[10] N. Jiang, Z. Cui, and P. Tan. A global linear method for

camera pose registration. In Proc. ICCV, pages 481–488,

2013. 1, 2, 4, 5, 6, 7, 8

[11] R. Kaucic, R. Hartley, and N. Dano. Plane-based projective

reconstruction. In Proc. ICCV, volume 1, pages 420–427,

2001. 1, 2

[12] V. Lepetit, F. Moreno-Noguer, and P. Fua. Epnp: An accu-

rate o(n) solution to the pnp problem. IJCV, 81(2):155–166,

2009. 4

[13] M. Lhuillier and L. Quan. A quasi-dense approach to surface

reconstruction from uncalibrated images. IEEE Trans. PAMI,

27(3):418–433, 2005. 1

[14] H. Li. Multi-view structure computation without explicitly

estimating motion. In Proc. CVPR, pages 2777–2784, 2010.

1, 2

[15] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2):91–110, 2004. 1, 7

[16] Y. Ma, S. Soatto, J. Kosecká, and S. S. Sastry. An invitation
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