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Abstract

We study the simultaneous detection of multiple struc-
tures in the presence of overwhelming number of outliers
in a large population of points. Our approach reduces the
problem to sampling an extremely sparse subset of the orig-
inal population of data in one grab, followed by an unsu-
pervised clustering of the population based on a set of in-
stantiated models from this sparse subset. We show that
the problem can be modeled using a multivariate hyper-
geometric distribution, and derive accurate mathematical
bounds to determine a tight approximation to the sample
size, leading thus to a sparse sampling strategy. We evalu-
ate the method thoroughly in terms of accuracy, its behavior
against varying input parameters, and comparison against
existing methods, including the state of the art. The key fea-
tures of the proposed approach are: (i) sparseness of the
sampled set, where the level of sparseness is independent of
the population size and the distribution of data, (ii) robust-
ness in the presence of overwhelming number of outliers,
and (iii) unsupervised detection of all model instances, i.e.
without requiring any prior knowledge of the number of em-
bedded structures. To demonstrate the generic nature of the
proposed method, we show experimental results on differ-
ent computer vision problems, such as detection of physical
structures e.g. lines, planes, etc., as well as more abstract
structures such as fundamental matrices, and homographies
in multi-body structure from motion.

1. Introduction and Related Works

Extending robust parameter estimation methods, such as
least median of squares (LMedS) [14] and random sam-
pling consensus (RANSAC) [7], to detect multiple model
instances simultaneously is an active area of research. One
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of the main challenges in a multi-structured environment
is the high percentage of outliers. This is due to the pres-
ence of two different types of outliers in the population: (i)
Gross outliers, which are basically points that do not belong
to any model instance, and (ii) Pseudo-outliers, which are
points that are inliers to one model instance but effectively
act as outliers to all other model instances in the popula-
tion [2]. Early approaches in identifying multiple model in-
stances estimated models sequentially using a single-model
fitting method [7]. At each iteration inliers to a model in-
stance were detected and removed and the process was re-
peated iteratively [18, 17, 22] for detecting additional model
instances. However, the efficiency of these algorithms re-
duces significantly for multi-structure datasets, since the
stopping criterion is usually non-trivial, and the removing
of the inliers at each iteration can affect the detection of
the remaining model instances. Moreover, an assumption
in single-model estimation algorithms is that the outliers
are uniformly distributed, which is violated when multiple
model instances are present, because they form clusters of
points as pseudo-outliers to any given model instance as de-
scribed above. This issue is discussed in [13], where it is
shown that clustered outliers are more difficult to handle
than uniformly distributed gross outliers. One of the most
popular single-model methods is the sequential RANSAC,
which explores one model per iteration, removes the associ-
ated inlier points from the dataset, and then proceeds itera-
tively to detect other instances [21]. As mentioned above, a
major drawback of these approaches, in addition to the dif-
ficulty of handling clustered outliers, is that the number of
model instances needs to be known in advance in order to
determine when to stop the iterations. This implies a super-
vised solution, where the number of model instances is as-
sumed to be known a priori, which in many practical cases
is not feasible.

More recent studies try to find all the model instances
and their parameters simultaneously. Generally, the re-
search in this area is focused on two main aspects: (i) the
study of the sampling process, whereby subsets of the data
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points are selected with the purpose of simultaneously in-
stantiating the underlying model instances, and (ii) the clus-
tering process which is used for grouping the data points
based on the information extracted from the sampled sub-
sets, leading to partitioning of the entire data population in-
cluding the gross outliers, and hence the estimation of the
underlying model parameters [6]. A review of the literature
in this category of methods reveals that the vast majority of
the studies are focused primarily on the second aspect. Nev-
ertheless, among the studies that also consider the sampling
process, the primary goal has been statistical robustness, i.e.
maximizing inlier selection for improving the breakdown
point [19, 16]. This is mainly motivated by the desire to
match the performance of RANSAC or RANSAC-like se-
quential methods that focus on building consensus sets.

The main common thread between most existing meth-
ods in terms of the sampling strategy is the idea of sampling
based on maximizing some probability of selecting inlier
points. This is either achieved by assuming some prior in-
formation (e.g. in the form of local neighborhood correla-
tion) [19, 16], or by dividing the sampling set into subsets
that are used successively to improve the inlier selections
[5, 9]. The former approach is achieved by sampling a col-
lection of minimum sampling sets rather than sampling a
collection of points, where the minimum sampling set is
typically equal to the number of degrees of freedom of each
model instance in the population, e.g. for lines in 2D we
would sample point pairs. This has the advantage of mak-
ing the subsequent clustering step a simpler process. In this
paper, our focus is mainly on the sampling step. In fact, our
sampling method can be used as the front end to any un-
supervised clustering method. Rather than focusing on the
strategy of maximizing the probability of sampling inliers,
our goal is to minimize the number of samples needed to in-
stantiate all underlying model instances. More specifically,
our goal is to answer the following question:

“Given a large population of points with multiple in-
stances of a structure and gross outliers, what is the min-
imum number of points r to be sampled randomly from this
population in one grab, in order to make sure with proba-
bility P that there are at least ε samples on each structure
instance?”

Here, ε is greater than or equal to the number of samples
needed to determine the number of degrees of freedom of
the structure.

The answer to this question is significant because of the
following reasons: (i) we will show that even under a huge
number of pseudo-outliers and gross outliers, r is extremely
small (i.e. the one-grab sample size is in practice a sparse
subset of the population), hence the name, Sparse With-
drawal of Inliers in a First Trial (SWIFT), (ii) although P
is an intricate function of r (difficult to invert), we prove
that it is a non-decreasing function, and hence r can be

mathematically approximated, and found by a simple one-
dimensional search regardless of the dimensionality of the
problem, (iii) unlike existing sampling strategies, r is very
slowly growing with the minimum model size θ, keeping
the one-grab sample set sparse even under overwhelming
number of pseudo-outliers (iv) the sparsity of the sampled
set implies that a sparse number of putative models can be
instantiated with limited computation, which can then be
used for a guided clustering of the entire data population,
or any subsets of it, (v) finally, robustness is pushed into the
clustering step, while keeping the sampled set sparse, which
in a sense is the opposite of current practice. This idea of
interchanging the role of sampling and clustering in terms
of achieving sparseness versus robustness has the advantage
that sparseness is attained by a sampling procedure, rather
than by sophisticated methods of imposing norm constraints
in an optimization scheme.

2. Proposed Method

SWIFT sampling requires three input parameters: the
minimum sample set ε per structure, the minimum model
size θ, and the probability P of grabbing at least ε points
on each structure, where ε is greater than or equal to the
number of samples needed to determine the number of de-
grees of freedom of each model instance, e.g. 2 for a line,
and 3 for a circle. The minimum model size, θ, is the mini-
mum number of inlier points necessary to accept a candidate
model, i.e. we assume that if a model size is smaller than
θ, then we are not interested in extracting it. To derive the
SWIFT sampling scheme, we start by assuming the worst-
case scenario, where all model instances in the population
are presumed to be of size θ. This implies that all outliers
are pseudo-outliers. We call this the worst-case scenario,
because it allows us to determine the maximum number of
possible model instances C that can be potentially present
in the population, which is given by:

C = dN
θ
e (1)

where de rounds the fraction to the nearest upper integer,
and N is the total number of points in the data set (i.e. the
population size). Next, we derive the SWIFT sampling pro-
cedure.

2.1. SWIFT Sampling

As stated earlier, the main aim of the SWIFT sampling
is to estimate the sampling size r in a one-time grab, in or-
der to make sure that with a specified probability at least
ε points are selected on each model, with the restriction
that no model can be smaller than θ points. To solve this
problem, we consider a population of size N in which
individuals are grouped in C classes of θ1, . . . , θC with



∑C
i=1 θi = N . Suppose a set of r points is selected ran-

domly in a one-time-grab sampling with xi points from the
ith instance. Then, the probability mass function (pmf) can
be modeled by the following multivariate hypergeometric
distribution [11]:

P
[
∩Ci=1(di = xi)

]
=

∏C
i=1

(
θi
xi

)(
N
r

) (2)

where
∑C
i=1 xi = r and 0 ≤ xi ≤ θi, (i = 1, . . . , C).

Equation (2) expresses the probability of a given sample
set in terms of r. However, our goal in SWIFT sampling is
actually to solve the inverse problem of finding r for a given
probability. For this purpose, we start by recognizing that
in our problem, we are dealing with the symmetric case,
where θ1 = θ2 = · · · = θC = θ. As mentioned earlier, in
the worst case, for a given N the maximum possible classes
would be C = N/θ. Therefore, by substituting N = Cθ in
equation (2), we get:

P
[
∩Ci=1(di = xi)

]
=

∏C
i=1

(
θ
xi

)(
Cθ
r

) (3)

The objective of the method can be equivalently ex-
pressed as the problem of finding r such that, for a given
value δ > 0, the probability of selecting at least ε points in
each of C model instances is at least 1− δ, that is

P (∩Ci=1(di ≥ ε)) ≥ 1− δ provided
C∑
i=1

di = r (4)

Note that the solution of the above problem is related to
the question of finding upper bounds for the tail probabil-
ities of the multivariate hypergeometric distribution (see,
e.g. [3, 1, 12]). The usual approach is to use some kind
of asymptotic expansion of the multivariate hypergeometric
probability, or to approximate it by a multinomial probabil-
ity. The difference between solution of the inequality (4)
and the settings that have been considered previously is that
(i) we are interested in constructing a non-asymptotic ap-
proach that will work for various parameter settings and (ii)
we are interested in the solution of the inverse problem of
finding r rather than estimating the probability in the left-
hand side of the inequality (4).

Denote d = r/C, so that r can be represented as r = Cd.
Then, the probability of selecting less than ε points from the
first model instance d1 can be calculated as follows:

∆ = P (d1 ≤ ε−1) =

ε−1∑
k=0

P (d1 = k) =

ε−1∑
k=0

(
θ
k

)(
(C−1)θ
Cd−k

)(
Cθ
Cd

)
= P (d1 = 0)

[
1 +

ε−1∑
k=1

P (d1 = k)

P (d1 = 0)

]
(5)

where Cd − k =
∑C
i=2 di. In order to find an upper-

bound for the right-hand side of equation (5), we first find
an upper-bound for P (d1 = 0):

P (d1 = 0) =

(
(C−1)θ
Cd

)(
Cθ
Cd

) =

θ−1∏
j=0

Cθ − Cd− j
Cθ − j

(6)

If (C − 1)θ ≥ Cd, then the right-hand side of equation (6)
can be further simplified using the inequality x−a

y−a ≤
x
y if

a < x < y:

P (d1 = 0) ≤
θ−1∏
j=0

Cθ − Cd
Cθ

=
(

1− r

Cθ

)θ
≤ e−r/C

(6a)
If the value of θ is large while d is relatively small, then

the right-hand sides of equation (6) provides an accurate
approximation of the exact value of the probability equation
(6a).

Now, let us find an upper bound for the ratio P (d1 =
k)/P (d1 = 0), the exact value of which can be evaluated
as follows:

P (d1 = k)

P (d1 = 0)
=

(
θ
k

)(
(C−1)θ
Cd−k

)(
(C−1)θ
Cd

)
=

(Cd)! [(C − 1)θ − Cd]!

k! (Cd− k)! [(C − 1)θ − (Cd− k)]!

k∏
j=1

(θ − j + 1)

=

(
Cd

k

) k−1∏
j=0

θ − j
(C − 1)θ − Cd+ k − j

≤
(
Cd

k

)[
θ

(C − 1)θ − Cd+ k

]k
(7)

If the value of θ is relatively large and the value of ε (and
hence k) is relatively small, so that d is much smaller than
θ, then the right-hand side of the equation (7) can be further
simplified as follows:

P (d1 = k)

P (d1 = 0)
≤
(
Cd

k

)[
θ

(C − 1)θ − Cd+ k

]k
≈
(
Cd

k

)(
1

C − 1

)k (7a)

Therefore, the probability of selecting less than ε points
from the first instance of the model d1 can be bounded
above as:

∆ = P (d1 ≤ ε− 1) ≤ P (d1 = 0)×
ε−1∑
k=0

P (d1 = k)

P (d1 = 0)

≤ P (d1 = 0)

ε−1∑
k=0

(
Cd

k

)(
θ

N − r − θ + k

)k
(8)



For P (d1 = 0), one can use either the exact formula in
equation (6) or the approximation in equation (6a). We used
equation (6) for better accuracy. Now, the total probability
of selecting not less than ε points in each of the model in-
stance can be bounded above using de Morgan’s laws and
the symmetry

P (∩Ci=1(di ≥ ε)) ≥ 1−
C∑
i=1

P (di ≤ ε−1) = 1−C∆ (9)

Setting C∆ = δ and solving equation (8) for r with ∆ =
δ/C, we obtain the value of r required for SWIFT sampling.
Since equation (9) is a non-decreasing function when C is
reasonably small, and because all variables in equations (8)
and (9) are known except for r, we can simply find r for
the given probability P by using a binary search through all
possible values of r between 1 and N .

The accuracy of the estimated bounds are studied in sec-
tion 3. Once r is estimated, the candidate points are se-
lected randomly as a single one-time grab sampled set. An
example of selecting random points over the population is
presented in Figure 1. Figure 1a shows a population size of
890 points forming 8 randomly crossing lines and gross out-
liers. Additionally, Figure 1b shows the population and the
candidate points selected with a probability of 0.90 when
ε = 2, which is the number of degrees of freedom of a line
in 2D.

2.2. Clustering and Parameter Estimation

Once a SWIFT subset of the population is selected, the
sampled points are used to estimate the model parameters.
Later, we detect the valid model instances in the popula-
tion, where valid means a model size larger than θ. As
pointed out earlier any clustering method may be used as
the back-end to our sampling step, e.g. [6, 16, 4, 10]. We
experimented with various clustering methods, including k-
means, a supervised version of mean-shift, the standard un-
supervised mean-shift, and the unsupervised method pro-
posed in [4]. In each case, the clustering was constrained to
use only the sparse SWIFT subset to instantiate the models.
Due to space limitation, we do not expand further on this
aspect. All examples shown hereafter, except the reported
results in section 4.1, are using mean-shift as the clustering
method, which is a non-parametric unsupervised clustering
method that does not require a prior knowledge of the num-
ber of clusters, and does not constrain the shape of the clus-
ters (Figure 1c and Figure 1d).

3. Experimental Evaluation

In this section, we evaluate the proposed sparse one-grab
sampling method, and investigate the effect of different in-
put parameters.

3.1. Accuracy of the Proposed Sampling Method

As mentioned in section 2.1, due to the non-decreasing
property of equation (9), the required number of sampled
points r can be estimated by a simple search, with the time
complexity ofO(log(N)). However, the success of the pro-
posed SWIFT sampling depends highly on the accuracy of
the estimated r. If the estimated r is too small, then some
of the model instances will not be detected. On the other
hand, if r is highly overestimated, then we lose the spar-
sity. In essence, by following the worst-case scenario, we
are treating the problem as if there were no gross outliers
in the population. On the other hand, the parameter θ is
chosen to be equal to the smallest possible size for a valid
model instance. These two assumptions, plus the fact that
the value of probability is in practice chosen close to one,
ensure that the estimated r is accurate.

To verify this prediction, we investigated the accuracy
of our approximation derived in section 2.1 against the the-
oretical values. We chose different population sizes with
different embedded model instances. The result of the-
oretical and estimated values of r given by equation (9)
are plotted against different desired probability values in
Figure 2. These plots illustrate the average values of r
over 200 independent trials for population sizes of N =
{100, 1000, 10000}.

Figure 2: Comparison of estimated r averaged over 200
independent trials versus the theoretical value of r when
N = {100, 1000, 10000} and ε = 2. From left to right:
C = {5, 20, 50}.

As expected, our approximations closely follow the the-
oretical values. Moreover, the two facts of using the esti-
mated formula for the probability P and searching through
that to find r explain the slight difference between the theo-
retical and estimated values.

3.2. Evaluation in Terms of Input Parameters

In this section, we study the effect of changing each of
the parameters in equation (9) on the estimated value of r.

Value of ε: One of the parameters in estimating r is the
minimum sample set ε per structure to be withdrawn by
SWIFT. If the population size N is fixed, then the growth
in ε leads to an increase in the number of required samples
r for a given probability P . This behavior is illustrated in
Figure 3a in which the population size, N , and number of



(a) 8 synthetic lines. (b) SWIFT samples. (c) Valid Candidate Lines. (d) Detected lines.

Figure 1: The population includes 8 lines and 50% gross outliers. (b): The calculated sample size of r = 180 whenN = 890,
P = 0.9 and θ = 30.

model instances C are constant. However, we can see that
the growth in r as ε increases is independent of P .

Number of Model Instances C and Model Size θ: In a
constant population sizeN , increasing the number of model
instances forces the method to also grab more points in or-
der to guarantee, with probability P , ε points on each model
instance. This behavior is shown in Figure 3b. Note that,
since the relation between θ andC is defined based on equa-
tion (1), in a constant N , increasing C is equivalent to de-
creasing the value of θ. Therefore, a similar behavior is
observed for θ in Figure 3c.

(a) changing ε (b) changing C (c) changing θ

Figure 3: The effect of changing different parameters on
the sample size r. (a): Increasing the value of ε forces the
method to select more samples in order to remain with the
same probability. (b) and (c): increasing C or decreasing θ
forces the method to grab more samples to reach the same
probability.

A very important observation is that, when the number
of classes C is fixed, increasing the population size N does
not affect the number of required sampled points r, i.e. the
level of sparseness is independent of the population size. On
the other hand, increasing gross outliers while θ is constant
would increase C. In other words, from equation (1), we
see that adding more gross outliers increases the worst case
estimate for C in equation (9). These cases are reported
further in the following section.

In the next section, we study the possible applications
that can use SWIFT as the front end. Later we compare
SWIFT with the state of the art method proposed in [9].

4. Applications and Comparisons

As a generic sparse sampling and unsupervised estima-
tion method, SWIFT can be used in virtually any scenario
where multiple structures need to be detected in a large pop-
ulation. Here, a population could be in a physical space (e.g.
planar or 3D structures), or in some abstract feature space
(e.g. the space of all fundamental matrices, or all homogra-
phies in some configuration of scene/camera motion).

4.1. SWIFT in Multibody Structure from Motion

Estimating motion models in a video sequence is a clas-
sical problem in computer vision. This problem gets more
complicated in dynamic cases when multiple rigid objects
move independently in a 3D scene [20, 8]. Thus multibody
structure from motion refers to the problem when there are
several views of a 3D scene and the motions, structures,
and camera calibration are unknown. Recent studies in this
area suggest various solutions to this problem [20, 15]. In
this section, we use the method in [15] but replace the sam-
pling step by SWIFT sampling method, and show that it
guarantees the accuracy of the final outcome. The first as-
sumption in [15] is that the number and parameters of the
motions in the scene are unknown, where each motion may
either be estimated with a homography or a fundamental
matrix. Thus, to start the process a set of 2-D point cor-
respondences is required. Then a fixed number of point
sets are randomly sampled to generate candidate homogra-
phies and fundamental matrices, using the constraints that
the minimum required correspondences for a homography
is 4 and for fundamental matrix is 7. A shortcoming of the
method, however, is that one must specify the number of
samples in order to ensure detecting all the motions in the
scene.

To investigate the effect of using SWIFT in this prob-
lem, we generated 100 synthetic scenes each containing
three 3D-objects (not necessarily planar) and a single mov-
ing camera. For each synthetic scene an initial 300 × 300
image is created. The 3D-objects and the camera are moved
randomly and independently and then the second 300×300



(a) First scene. (b) Second scene. (c) 2D projection of 4a. (d) 2D projection of 4b.

Figure 4: Synthetic data for multibody structure from motion. The outliers are added after moving objects and computing
the 2D projections. These outliers are not shown in this figure. (a): The 3D objects that are not necessarily planar. (b): 3D
objects are moved randomly and independently. (c): The image is taken from (a). (d): The image is taken from (b) after
moving the camera.

image is taken. An example of 3D-objects and their 2D pro-
jections are shown in Figure 4. Using the images, point cor-
respondences are generated by selecting 50 random points
from each object. Assuming that points at close proxim-
ity are likely to belong to the same object, the sampling
strategy explained in [15] divided images heuristically into
9 overlapped areas and sampled points locally. In our ex-
periment, to exploit the proximity constraint, we applied a
simple image segmentation algorithm to divide the image
into separate clusters. We show later that the accuracy of
image segmentation does not dramatically affect the final
results.

In [15], since they sample a batch of ε-tuples, these sets
are sampled separately. In SWIFT, however, since r points
are sampled in a one-time grab, we can employ these sam-
ples for both homography and fundamental matrices, i.e.
since ε for a fundamental matrix is greater that ε for a ho-
mography, we can sample r as the number of points re-
quired for finding all fundamental matrices. Then a sub-
set of that is enough to find the homoghraphies. In the
first experiment, the effect of changing the accuracy of im-
age segmentation is studied. In this experiment, based on
the chosen value of θ, the sample size r is computed and
grabbed out of the total population N = 200, where 50
points (25%) that are gross outlier are added to the corre-
spondences. Sampling r points, the number of inliers sam-
pled in each segment is computed. Figure 5 shows the num-
ber of inliers per segment as the accuracy of image segmen-
tation is increasing and considering the homography and
fundamental matrices with (a) ε = 4 and (b) ε = 7.

The key advantage of using SWIFT sampling is that the
required number of samples to maintain a certain level of
accuracy with a given probability can be calculated. There-
fore, the accuracy of the results can be maintained stable as
illustrated in Figure 6. In this experiment as the number of
gross outliers is growing, the size of population N is also
increasing based on the SWIFT sampling theory. Since, the

other parameters θ, P and ε are fixed, increasing N leads
to selecting a more accurate number of points r. Figure 6a
demonstrates this idea of stability of SWIFT sampling in
terms of accuracy of results.

(a) ε = 4. (b) ε = 7.

Figure 5: The effect of changing the accuracy of image seg-
mentation on the average number of inliers sampled in each
model instance when N = 200, P = 0.9, with 25% (50
points) outliers and 3 motions. (a): ε = 4 and the value of
sampled point r when θ = {40, 50} is r = {36, 29} respec-
tively. (b): ε = 7 and the value of sampled point r when
θ = {40, 50} is r = {45, 36}, respectively.

To examine the method on a real case, we used the image
presented in [15]. We first applied a basic image segmenta-
tion to cluster objects of the scene (Figure 7a). Then the ini-
tial candidate homoghtaphies and fundamental matrices are
calculated using the approach in [15], with segmentation as
a proximity constraint. In this example the average number
of initial candidates (homographies and fundamental matri-
ces), generated over 20 trials, was 13, 073. Basically, this
number of samples guarantees with probability P that the
group of candidates includes all the existing motions in the
scene.

4.2. Two-Level SWIFT to Detect 3D Planes

In this experiment, we investigated the accuracy of
SWIFT sampling method for detecting planes in 3D space.



(a) Detected. (b) r: Homographies. (c) r: Fundamental Mat. (d) #Candidates.

Figure 6: The effect of changing percentage of outliers on required sampled points and accuracy of multibody structure form
motion in [15]. The results are in the presence of 3 independent motions. The image segmentation has an average accuracy
of 65% and θ = 40. (a): % of Detected models. (b), (c): Values of r when ε = {4, 7} respectively. (d): initial candidates for
both homographies and fundamental matrices

(a) segmented. (b) Left image. (c) Right image.

Figure 7: Using SWIFT to detect multibody structure from
motionin [15]. The result is in the presence 80% accuracy
for image segmentation. N = 200 with 25% gross outliers,
θ = 45, P = 0.9 and r = {36, 50} for finding homo-
graphies and fundamental matrices respectively. (a): seg-
mented image. Yellow dots are the correspondences and red
stars are the sampled points. (b),(c): images with 3 objects
moved independently and the detected motions.

In the first step, we considered synthetic models as illus-
trated in Figure 8. We examined two different scenarios.
The first used a set of 3D points from Castelvecchio dataset
[16] with three planes and no gross outliers (Figure 8a). The
second one used a synthetic dataset, with two planes and
50% gross outliers (Figure 8b). As it is shown in Figure 8
the planes are detected correctly and gross outliers are not
considered as inliers to any of the instances.

In the second step, we examined real cases where images
are collected with a Kinect. Generally, the point clouds gen-
erated with Kinect include a huge number of points while
the number of valid model instances in the scene is small.
(i.e. N and θ are large relative to C). In these particular
cases, the procedure of finding inliers for all the candidate
model instances is a time consuming process since the total
number of points N is extremely large. In order to over-
come to this problem, the SWIFT method can be applied
on two separate levels. On the first level, the value of r is
computed to sample minimum required number of points
to generate each model candidate (which is 3 for detecting

(a) 3 planes and no gross
outliers.

(b) 2 planes with 50% gross
outliers.

Figure 8: Using SWIFT to detect 3D Planes when P = 0.9
and in the presence of 66% outliers, including both pseudo-
outliers and gross outliers. (a): Data is from Castelvecchio
dataset [16] where r = 42 and N = 754. (b): Blue point
are outliers that are not grouped in any model when r = 43
and N = 3000

planes). Thus, the sample size r is used to generate all the
model candidates. On the second level, we can set the value
of ε to a bigger number (like 100) and sample a group of
points from the population with a guarantee of selecting at
least ε = 100 points in each plane. The second group of
points can then be used, instead of the entire population, as
the group of points from which we select inliers for each
model candidate. This two-level process can dramatically
decrease the computation time. In Figure 9, the point cloud
data from a Kinect is used and three planes are detected us-
ing the SWIFT algorithm.

4.3. Comparison in Terms of Sparseness

This section compares SWIFT with other existing meth-
ods in terms of sparseness and precision/recall. Since one
of the primary goals of SWIFT is sparse sampling, we
compared the sample size computed by SWIFT against the
number of sampled points in other existing methods. As



Figure 9: Detecting planes in 3D point cloud data collected
using a Kinect. By filtering the points with depth = 0 the
total number of points in the cloud is N = 167, 028 and
θ = 30, 000. By setting P = 0.9, the size of sampled point
on the first level when ε = 3 is r = 43 and on the second
level when ε = 100 is r = 714.

mentioned earlier, sampling methods such as [9] sample
a batch of M ε-tuples (referred to as minimum sampling
sets). Thus, the total number of sampled points is ε ×M .
Figure 10 shows the result of comparing the computed num-
ber of sample points in SWIFT, the method in [9], and the
sequential-RANSAC. The illustrated values for sequential-
RANSAC is computed using the number of required sample
points to detect each model instances times to maximum
number of instances C [9]. As demonstrated, the sample
size obtained by SWIFT sampling is significantly smaller
than the computed value in the two other methods.

Figure 10: Comparing the averaged number of samples
r over 200 trials in sequential RANSAC, the proposed
method in [9], and SWIFT when N = {100, 1000, 10000},
ε = 2 and P = 0.9.

4.4. Comparison with Sequential Sampling

Iterative methods, in detecting mutliple model instances,
remove inliers belonging to a detected model instance be-
fore exploring next instances in the population. Thus, the
accuracy of their algorithm can be diminished when the
points belong to more than one model instance. In this sec-
tion we compare the impact of SWIFT sampling versus the
sequential sampling used in sequential-RANSAC.

We examined the experiment using a set 200 indepen-
dent images with eight randomly crossing lines and 50%

Figure 11: Comparing SWIFT and sequential RANSAC
in presence of 50% gross outliers and when P =
{0.5, .., 0.95}, θ = {30, 35}.

gross outliers. Furthermore, to make a fair comparison,
we used a supervised version of mean-shift for clustering
valid models sampled by SWIFT. To show the accuracy
of SWIFT in compare with sequential RANSAC, we used
precision-recall graphs. As shown in Figure 11, the average
recall for SWIFT when θ = {30, 35} and the probability
is ranging between 0.50 and 0.95 is over 99%. Obviously,
the accuracy of sequential RANSAC is steady since it is not
a function of the probability (P ), nor it is dependent on θ.
As illustrated, the accuracy of the proposed method is dis-
tinctly superior especially when the P > 0.70. Note that,
since a supervised clustering is used in this experiment, the
value of precision, which is TP

TP+FP , is always equal to one
as FP is equal to zero.

5. Conclusion

This paper introduces a sparse one-time grab random
sampling method, which combined with an unsupervised
clustering method, such as mean-shift, can be used to si-
multaneously detect multiple structures (distributions) in a
large population of data with overwhelming percentage of
outliers. This important problem occurs frequently in var-
ious applications of pattern recognition, machine learning,
computer vision, and in general multi-distribution model es-
timation problems. We prove that the problem can be accu-
rately modeled using a multivariate hypergeometric distri-
bution, and by studying its bounds, we determine a method
of selecting the minimum sample size that guarantees with
some probability the detection of all model instances in the
data.

Thorough analyses of the proposed SWIFT sampling
method show that the method has a lot desirable behaviors
in terms of accuracy and sparseness that is independent of
the population size. We show that the approach outperforms
sequential and RANSAC-like methods, and produces the
same quality of results compared with the state-of-the-art
multi-distribution methods, with the advantage of sparse-
ness, i.e. reducing the sample size to its bare minimum.
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