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Abstract

Self-similarity based super-resolution (SR) algorithms
are able to produce visually pleasing results without exten-
sive training on external databases. Such algorithms exploit
the statistical prior that patches in a natural image tend to
recur within and across scales of the same image. However,
the internal dictionary obtained from the given image may
not always be sufficiently expressive to cover the textural
appearance variations in the scene. In this paper, we extend
self-similarity based SR to overcome this drawback. We ex-
pand the internal patch search space by allowing geometric
variations. We do so by explicitly localizing planes in the
scene and using the detected perspective geometry to guide
the patch search process. We also incorporate additional
affine transformations to accommodate local shape varia-
tions. We propose a compositional model to simultaneously
handle both types of transformations. We extensively evalu-
ate the performance in both urban and natural scenes. Even
without using any external training databases, we achieve
significantly superior results on urban scenes, while main-
taining comparable performance on natural scenes as other
state-of-the-art SR algorithms.

1. Introduction
Most modern single image super-resolution (SR) meth-

ods rely on machine learning techniques. These methods
focus on learning the relationship between low-resolution
(LR) and high-resolution (HR) image patches. A popular
class of such algorithms uses an external database of natu-
ral images as a source of LR-HR training patch pairs. Exist-
ing methods have employed various learning algorithms for
learning this LR to HR mapping, including nearest neighbor
approaches [14], manifold learning [6], dictionary learning
[41], locally linear regression [38, 33, 34], and convolu-
tional networks [9].

However, methods that learn LR-HR mapping from ex-
ternal databases have certain shortcomings. The number
and type of training images required for satisfactory levels
of performance are not clear. Large scale training sets are
often required to learn a sufficiently expressive LR-HR dic-

Figure 1. Examples of self-similar patterns deformed due to local
shape variation, orientation change, or perspective distortion.

tionary. For every new scale factor by which the resolution
has to be increased, or SR factor, these methods need to re-
train the model using sophisticated learning algorithms on
large external datasets.

To avoid using external databases and their associated
problems, several approaches exploit internal patch redun-
dancy for SR [10, 15, 13, 28]. These methods are based on
the fractal nature of images [3], which suggests that patches
of a natural image recur within and across scales of the same
image. An internal LR-HR patch database can be built us-
ing the scale-space pyramid of the given image itself. Inter-
nal dictionaries have been shown to contain more relevant
training patches, as compared to external dictionaries [44].

While internal statistics have been successfully exploited
for SR, in most algorithms the LR-HR patch pairs are found
by searching only for “translated” versions of patches in
the scaled down images. This effectively assumes that an
HR version of a patch appears in the same image at the
desired scale, orientation and illumination. This amounts
to assuming that the patch is planar and the images of the
different assumed occurences of the patch are taken by a
camera translating parallel to the plane of the patch. This
fronto-parallel imaging assumption is often violated due to
the non-planar shape of the patch surface, common in both
natural and man-made scenes, as well as perspective distor-
tion. Fig. 1 shows three examples of such violations, where
self-similarity across scales will hold better if suitable geo-
metric transformation of patches is allowed

In this paper, we propose a self-similarity driven SR al-
gorithm that expands the internal patch search space. First,
we explicitly incorporate the 3D scene geometry by local-
izing planes, and use the plane parameters to estimate the
perspective deformation of recurring patches. Second, we
expand the patch search space to include affine transfor-
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mation to accommodate potential patch deformation due to
local shape variations. We propose a compositional trans-
formation model to simultaneously handle these two types
of transformations. We modify the PatchMatch algorithm
[1] to efficiently solve the nearest neighbor field estimation
problem. We validate our algorithm through a large number
of qualitative and quantitative comparisons against state-of-
the-art SR algorithms on a variety of scenes. We achieve
significantly better results for man-made scenes containing
regular structures. For natural scenes, our results are com-
parable with current state-of-the-art algorithms.

Our Contributions:
1. Our method effectively increases the size of the limited
internal dictionary by allowing geometric transformation of
patches. We achieve state-of-the-art results without using
any external training images.
2. We propose a decomposition of the geometric patch
transformation model into (i) perspective distortion for han-
dling structured scenes and (ii) additional affine transforma-
tion for modeling local shape deformation.
3. We use and make available a new dataset of urban im-
ages containing structured scenes as a benchmark for SR
evaluation.

2. Related Work
The core of image SR algorithms has shifted from inter-

polation and reconstruction [22] to learning and searching
for best matching existing image(s) as the HR map of the
given LR image. We limit our discussion here to these more
current learning-based approaches and classify the corre-
sponding algorithms into two main categories: external and
internal, depending on the source of training patches.

External database driven SR: These methods use a va-
riety of learning algorithms to learn the LR-HR mapping
from a large database of LR-HR image pairs. These include
nearest neighbor [14], kernel ridge regression [23], sparse
coding [41, 40, 42, 36], manifold learning [6] and convo-
lutional neural networks [9]. The main challenges lie in
how to effectively model the patch space. As opposed to
learning a global mapping over the entire dataset, several
methods alleviate the complexity of data modeling by par-
titioning or pre-clustering the external training database, so
that relatively simpler prediction functions could be used
for performing the LR-HR mapping in each training clus-
ter [38, 33, 34]. Instead of learning in the 2D patch do-
main, some methods learn how 1D edge profiles transform
across resolutions [30, 11]. Higher-level features have also
been used in [16, 31, 32] for learning the LR-HR mapping.
In contrast, our algorithm has the advantage of neither re-
quiring external training databases, nor using sophisticated
learning algorithms.

Internal database driven SR: Among internal database
driven SR methods, Ebrahimi and Vrscay [10] combined
ideas from fractal coding [3] with example-based algo-

rithms such as non-local means filtering [5], to propose a
self-similarity based SR algorithm. Glasner et al. [15] uni-
fied the classical and example-based SR by exploiting the
patch recurrence within and across image scales. Freedman
and Fattal [13] showed that self-similar patches can often
be found in limited spatial neighborhoods, thereby gain-
ing computational speed-up. Yang et al. [39] refined this
notion further to seek self-similar patches in extermely lo-
calized neighborhoods (in-place examples), and performed
first-order regression on them. Michaeli and Irani [26] used
self-similarity to jointly recover the blur kernel and the HR
image. Singh et al. [29] used the self-similarity principle
for super-resolving noisy images.

Expanding patch search space: Since internal dictio-
naries are constructed using only the given LR image, they
tend to contain a much smaller number of LR-HR patch
pairs compared to external dictionaries which can be as
large as desired. Singh and Ahuja used orientation selec-
tive sub-band energies for better matching textural patterns
[27] and later reduced the self-similarity based SR into a set
of problems of matching simpler sub-bands of the image,
amounting to an exponential increase in the effective size
of the internal dictionary [28]. Zhu et al. [43] proposed to
enhance the expressiveness of the dictionary by optical flow
based patch deformation during searching, to match the de-
formed patch with images in external databases. We use
projective transformation to model the deformation com-
mon in urban scenes to better exploit internal self-similarity.
Fernandez-Granda and Candes [12] super-resolved planar
regions by factoring out perspective distortion and impos-
ing group-sparse regularization over image gradients. Our
method also incorporates 3D scene geometry for SR, but
we can handle multiple planes and recover regular textu-
ral patterns beyond orthogonal edges through self-similarity
matching. In addition, our method is a generic SR algo-
rithm that handles both man-made and natural scenes in one
framework. In the absense of any detected planar struc-
tures, our algorithm automatically falls back to searching
only affine transformed self-exemplars for SR.

Our work is also related to several recent approaches
that solve other low-level vision problems using over-
parameterized (expanded) patch search spaces. Although
more difficult to optimize than 2D translation, such over-
parametrization often better utilizes the available patch
samples by allowing transformations. Examples include
stereo [4], depth upsampling [19], optical flow [18], image
completion [21, 20], and patch-based synthesis [8]. Such
expansion of the search space is particularly suited for the
SR problem due to the limited size of internal dictionaries.

3. Overview
Super-resolution scheme: Given a LR image I, we first
blur and subsample it to obtain its downsampled version ID.
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Figure 2. Comparison with external dictionary and internal dictio-
nary (self-similarity) approaches. Middle row: Given LR image I.
Our method allows for geometrically transforming the target patch
from the input image, while searching for its nearest neighbor in
the downsampled image. The HR version of the best match found
is then pasted on to the HR image. This is repeated for all patches
in the input image I.

Using I and ID, our algorithm to obtain an HR image IH
consists of the following steps:
1) For each patch P (target patch) in the LR image I,
we compute a transformation matrix T (homography) that
warps P to its best matching patch Q (source patch) in the
downsampled image ID, as illustrated in Fig. 2 (c). To ob-
tain the parameters of such a transformation, we estimate
a nearest neighbor field between I and ID using a modified
PatchMatch algorithm [1] (details given in Section 4).
2) We then extract QH from the image I, which is the HR
version of the source patch Q.
3) We use the inverse of the computed transformation ma-
trix T to ‘unwarp’ the HR patch QH, to obtain the self-
exemplar PH, which is our estimated HR version of the tar-
get patch P. We paste PH in the HR image IH at the location
corresponding to the LR patch P.
4) We repeat the above steps for all target patches to obtain
an estimate of the HR image IH.
5) We run the iterative backprojection algorithm [22] to en-
sure that the estimated IH satisfies the reconstruction con-
straint with the given LR observation I.

Fig. 2 schematically illustrates the important steps in our
algorithm, and compares it with other frameworks.

Motivation for using transformed self-exemplars: The
key step in our algorithm is the use of the transformation
matrix T that allows for geometric deformation of patches,
instead of simply searching for the best patches under trans-
lation. We justify the use of transformed self-exemplars
with two illustrative examples in Fig. 3. Matching using
the affine transformation and and planar perspective trans-
formation achieves both lower matching errors and more
accurate prediction of the HR content than that from match-
ing patches under translation.

4. Nearest Neighbor Field Estimation
4.1. Objective function

Let Ω be the set of pixel indices of the input LR image I.
For each target patch P(ti) centered at position ti = (tx

i , t
y
i )
>

in I, our goal is to estimate a transformation matrix Ti
that maps the target patch P(ti) to its nearest neighbor
in the downsampled image ID. A dense nearest neighbor
patch search forms a nearest-neighbor field (NNF) estima-
tion problem. In contrast to the conventional 2D translation
(or offsets) field, here we have a field of transformations
parametrized by θi for ith pixel in the input LR image. Our
objective function for this NNF estimation problem takes
the form

min
{θi}

∑
i∈Ω

Eapp(ti,θi)+Eplane(ti,θi)+Escale(ti,θi), (1)

where θi is the unknown set of parameters for constructing
the transformation matrix Ti that we need to estimate (in a
way explained later). Our objective function includes three
costs: (1) appearance cost, (2) plane cost, and (3) scale cost.
Below we first describe each of these costs.

Appearance cost Eapp: This cost measures similarity be-
tween the sampled target and source patches. We use
Gaussian-weighted sum-of-squared distance in the RGB
space as our metric:

Eapp(ti,θi) = ||Wi (P(ti)−Q(ti,θi)) ||22, (2)
where the matrix Wi is the Gaussian weights with σ2 = 3,
Q(ti,θi) denotes the sampled patch from ID using the trans-
formation Ti with parameter θi.

We now present how we design and construct the trans-
formation matrix Ti from estimated parameter θi for sam-
pling the source patch Q(ti,θi). The geometric transforma-
tion of a patch in general can have up to 8 degrees of free-
dom (i.e., a projective transformation). One way to estimate
the patch geometric transformation is to explicitly search in
the additional patch space (e.g., scale, rotation) [2, 17, 8] be-
yond translation. However, perspective distortion can only
be approximated by scaling, rotation and shearing of affine
transformations. Therefore, affine transformations by them-
selves are less effective in modeling the appearance varia-
tions in man-made, structured scenes. Huang et al. [20] ad-
dressed this problem by detecting planes (and their param-
eters) and using them to determine the perspective transfor-
mation between the target and source patch. In Fig. 4, we
show a visualization of vanishing point detection and pos-
terior probability map for detection of planes, as yielded by
[20].

In this paper, we combine the explicit search strategy of
[2, 17, 8], along with the perspective deformation estima-
tion approach of [20]. Using the algorithm of [20]1, we de-
tect and localize planes and compute the planar parameters,

1Available at https://github.com/jbhuang0604/
StructCompletion

https://github.com/jbhuang0604/StructCompletion
https://github.com/jbhuang0604/StructCompletion


(a) Affine transformation (b) Planar perspective transformation
Figure 3. Examples demonstrating the need for using transformed self-exemplars in our self-similarity based SR. Red boxes indicate a
selected target patch (to be matched) in the input LR image I. We take the selected target patch, remove its mean, and find its nearest
neighbor in the downsampled image ID. We show the error found while matching patches in ID in the second column. Blue boxes indicate
the nearest neighbor (best matched) patch found among only translational patches, and green boxes indicate the nearest neighbor found
under the proposed (a) affine transformation and (b) planar perspective transformation. In the third and fourth columns we show the
matched patches Q in the downsampled images ID and their HR version QH in the input image I.

Figure 4. (a) Vanishing point detection. (b) Visualization of poste-
rior plane probability.

as shown by the example in Fig. 4. We propose to parame-
terize Ti by θi = (si,mi), where si = (sx

i ,s
y
i ,s

s
i ,sθ

i ,s
α
i ,s

β

i ) is
the 6-D affine motion parameter of the source patch and
mi is the index of detected plane (using [20]). We pro-
pose a factored geometric transformation model Ti(θi) of
the form:

Ti(θi) = H
(
ti,sx

i ,s
y
i ,mi

)
S
(

ss
i ,s

θ
i

)
A
(

sα
i ,s

β

i

)
, (3)

where the matrix H captures the perspective deformation
given the target and source patch positions and the planar
parameters (as described in [20]). The matrix

S
(

ss
i ,s

θ
i

)
=

[
ss

i R(sθ
i ) 0

0> 1

]
(4)

captures the similarity transformation through a scaling pa-
rameter ss

i and a 2×2 rotation matrix R(sθ
i ), and the matrix

A
(

sα
i ,s

β

i

)
=

 1 sα
i 0

sβ

i 1 0
0 0 1

 (5)

captures the shearing mapping in the affine transformation.
The proposed compositional transformation model re-

sembles the classical decomposition of a projective transfor-
mation matrix into a concatenation of three unique matrices:
similarity, affine, and pure perspective transformation [24].
Yet, our goal here is to “synthesize,” rather than“analyze”
the transformation Ti for sampling source patches. The

proposed formulation allows us to effectively factor out
the dependency of the positions of the target ti and source
patch (sx

i ,s
y
i ) for estimating the perspective deformation in

H
(
ti,sx

i ,s
y
i ,mi

)
from estimating affine shape deformation

parameters using (ss
i ,sθ

i ,s
α
i ,s

β

i ) for matrices S and A. This
is crucial because we can then exploit piecewise smooth-
ness characteristics in natural images for efficient nearest
neighbor field estimation.

Plane compatibility cost Eplane: For man-made images,
we can often reliably localize planes in the scene using stan-
dard vanishing point detection techniques. The detected 3D
scene geometry can be used to guide the patch search space.
We modify the plane localization code in [20] and add a
plane compatibility cost to encourage the search over the
more probable plane labels for source and target patches.

Eplane =−λplane log
(
Pr[mi|(sx

i ,s
y
i )]×Pr[mi|(tx

i , t
y
i )]
)
, (6)

where the Pr[mi|(x,y)] is the posterior probability of assign-
ing label mi at pixel position (x,y) (see Fig 4 (b) for an ex-
ample).

Scale cost Escale: Since we allow continuous geometric
transformations, we observed that the nearest neighbor field
often converged to the trivial solution, i.e., matching tar-
get patches to itself in the downsampled image ID. Such a
match has small appearance cost. This trivial solution leads
to the conventional bicubic interpolation for SR. We avoid
such trivial solutions by introducing the scale cost Escale:

Escale = λscale min(0,SRF−Scale(Ti)), (7)

where SRF indicates the desired SR factor, e.g., 2x, 3x, or
4x, and the function Scale(·) indicates the scale estimation
of a projective transformation matrix. We approximately



estimate the scale of the source patch sampled using Ti with
the first-order Taylor expansion [7]:

Scale(Ti) =

√
det
([

T1,1−T1,3T3,1 T1,2−T1,3T3,2
T2,1−T2,3T3,1 T3,1−T2,3T3,2

])
,

where Tu,v indicates the value of uth row and vth column in
the transformation matrix Ti with T3,3 normalized to one.
Intuitively, we penalize if the scale of the source patches is
too small. Therefore, we encourage the algorithm to search
for source patches that are similar to the target patch and
at the same time to have larger scale in the input LR im-
age space; and therefore we are able to provide more high-
frequency details for SR. We soft-threshold the penalty to
zero when the scale of the source patch is sufficiently large.

4.2. Inference
We need to estimate 7-dimensional (θi ∈ R7) nearest

neighbor field solutions over all overlapping target patches.
Unlike the conventional self-exemplar based methods [15,
13], where only a 2D translation field needs to be estimated,
the solution space in our formulation is much more difficult
to search. We modify the PatchMatch [1] algorithm for this
task with the following detailed steps.

Initialization: Instead of the random initialization done
in PatchMatch [1], We initialize the nearest neighbor field
with zero displacements and scales equal to the desired SR
factor. This is inspired by [13, 39], suggesting that good
self-exemplars can often be found in a localized neighbor-
hood. We found that this initialization strategy provides a
good start for faster convergence.

Propagation: This step efficiently propagates good
matches to neighbors. In contrast to propagating the trans-
formation matrix Ti directly, we propagate the parameter
θi = (si,mi) instead so that the affine shape transformation
is invariant to the source patch position.

Randomization: After propagation in each iteration, we
perform randomized search to refine the current solution.
We simultaneously draw random samples of the plane index
based on the posterior probability distribution, randomly
perturb the affine transformation and randomly sample po-
sition (in a coarse-to-fine manner) to search for the optimal
geometric transformation of source patches and reduce the
matching errors.

5. Experiments
Datasets: Yang et al. [37] recently proposed a bench-

mark for evaluating single image SR methods. Most images
therein consist of natural scenes such as landscapes, ani-
mals, and faces. Images that contain indoor, urban, archi-
tectural scenes, etc., rarely appear in this benchmark. How-
ever, such images feature prominently in consumer pho-
tographs. We therefore have created a new dataset Urban
100 containing 100 HR images with a variety of real-world
structures. We constructed this dataset using images from

Flickr (under CC license) using keywords such as urban,
city, architecture, and structure.

In addition, we also evaluate our algorithm on the BSD
100 dataset, which consists of 100 test images of natural
scenes taken from the Berkeley segmentation dataset [25].
For this dataset, we evaluate for SR factors of 2x, 3x, and
4x.

Methods evaluated: We compare our results against
several state-of-the-art SR algorithms. Specifically, we
choose four SR algorithms trained using a large number of
external LR-HR patches for training. The algorithms we
use are: Kernel rigid regression (Kim) [23], sparse cod-
ing (ScSR) [41], adjusted anchored neighbor neighbor re-
gression (A+) [34], and convolutional neural networks (SR-
CNN) [9].2 We also compare our results with those of the
internal dictionary based approach (Glasner) [15] 3 and the
sub-band self-similarity SR algorithm (Sub-Band) [28].4

All our datasets, results, and the source code will be made
publicly available.

Implementation details: We use 5×5 patches and per-
form SR in multiple steps. We achieve 2x, 3x, 4x SR factors
in three, five and six upscaling steps, respectively. At the
end of each step, we run 20 iterations of the backprojection
algorithm [22] with a 5× 5 Gaussian filter with σ2 = 1.2.
The NNF solution from a coarse level is upsampled and
used as an initialization for the next finer level. We em-
pirically set the parameters λplane = 10−3 and λscale = 10−3.
The parameters are kept fixed for all our experiments.

Qualitative evaluation: In Figure 5, we show visual re-
sults on images from the Urban 100 dataset. We show only
the cropped regions here. Full image results are available in
the supplementary material. We find that our method is ca-
pable of recovering structured details that were missing in
the LR image by properly exploiting the internal similarity
in the LR input. Other approaches, using external images
for training, often fail to recover these structured details.
Our algorithm well exploits the detected 3D scene geome-
try and the internal natural image statistics to super-resolve
the missing high-frequency contents. In Fig. 6 and 7, we
demonstrate that our algorithm is not restricted to images of
a single plane scene. We are able to automatically search
for multiple planes and estimate their perspective and affine
transformations to robustly predict the HR image.

In Fig. 8 and 9, we show two results on natural images
where no regular structures can be detected. In such cases,
our algorithm reduces to searching for affine transforma-
tions only in the nearest neighbor field, similar to [2]. On
natural images without any particular geometric regularity,
our method performs as well as the recent, state-of-the-art
methods such as [9, 34], although, as can be seen in both ex-
amples, our results contain slightly sharper edges and fewer

2Implementations of [23, 41, 34, 9] are available on authors’ websites.
3We implement this from the paper [15].
4Results were provided by the authors.



HR (PSNR, SSIM)

A+ [34] (25.46, 0.9024)

Kim [23] (25.1750, 0.8976)

Sub-band [28] (26.37, 0.9243)

ScSR [41] (24.86, 0.8883)

SRCNN [9] (25.10, 0.8863)

Glasner [15] (25.94, 0.9147)

Ours (27.94, 0.9430)

HR (PSNR, SSIM)

A+ [34] (29.64, 0.8424)

Kim [23] (29.45, 0.8387)

Sub-band [28] (29.60, 0.8448)

ScSR [41] (29.29, 0.8331)

SRCNN [9] (29.55, 0.8342)

Glasner [15] (29.60, 0.8493)

Ours (30.83, 0.8711)

HR (PSNR, SSIM)

A+ [34] (27.23, 0.7967)

Kim [23] (26.91, 0.7857)

Sub-band [28] (27.15, 0.7932)

ScSR [41] (26.78, 0.7783)

SRCNN [9] (27.02, 0.7856)

Glasner [15] (26.71, 0.7764)

Ours (27.38, 0.8010)

Figure 5. Visual comparison for 4x SR. Our method is able to explicitly identify perspective geometry to better super-resolve details of
regular structures occuring in various urban scenes. Full images are provided in supplementary material.

HR (PSNR, SSIM)

A+ [34] (20.08, 0.7257)

Kim [23] (20.07, 0.7207)

Sub-band [28] (20.34, 0.7242)

ScSR [41] (19.77, 0.7027)

SRCNN [9] (20.05, 0.7179)

Glasner [15] (20.11, 0.7000)

Ours (21.15, 0.7650)

Figure 6. Visual comparison for 4x SR. Our algorithm is able to super-resolve images containing multiple planar structures.

artifacts such as ringing. We present more results for both
Urban 100 and BSD 100 datasets in the supplementary ma-
terial.

Quantitative evaluation: We also perform quantitative
evaluation of our method in terms of PSNR (dB) and struc-
tural similarity (SSIM) index [35] (computed using lumi-
nance channel only). Since such quantitative metrics may
not correlate well with visual perception, we invite the
reader to examine the visual quality of our results for better
evaluation of our method.

Table 1 shows the quantitative results on Urban 100 and

BSD 100 dataset. Numbers in red indicate the best perfor-
mance and those in blue indicate the second best perfor-
mance. Our algorithm yields the best quantitative results for
this dataset, 0.2-0.3 dB PSNR better than the second best
method (A+) [34] and 0.4-0.5 dB better than the recently
proposed SRCNN [9]. We are able to achieve these results
without any training databases, while both [34] and [9] re-
quire millions of external training patches. Our method also
outperforms the self-similarity approaches of [15] and [28],
validating our claim of being able to extract better inter-
nal statistics through the expanded internal search space. In



HR (PSNR, SSIM)

A+ [34] (20.03, 0.4523)

Kim [23] (19.99, 0.4437)

Sub-band [28] (20.00, 0.4573)

ScSR [41] (19.94, 0.4341)

SRCNN [9] (19.98, 0.4386)

Glasner [15] (19.86, 0.4258)

Ours (20.09, 0.4690)
Figure 7. Visual comparison for 4x SR. Our algorithm is able to better exploit the regularity present in urban scenes than other methods. .

HR (PSNR, SSIM)

A+ [34] (27.62, 0.7007)

Kim [23] (27.49, 0.6948)

Sub-band [28] (27.33, 0.6916)

ScSR [41] (27.42, 0.6908)

SRCNN [9] (27.52, 0.6938)

Glasner [15] (27.20, 0.6825)

Ours (27.60, 0.6966)
Figure 8. Visual comparison for 3x SR. Our result produces sharper edges than other methods. Shapes of fine structures (such as the horse’s
ears) are reproduced more faithfully in our result.

HR (PSNR, SSIM)

A+ [34] (34.27, 0.9144)

Kim [23] (34.22, 0.9128)

Sub-band [28] (33.55, 0.9053)

ScSR [41] (33.37, 0.9052)

SRCNN [9] (34.18, 0.9107)

Glasner [15] (33.47, 0.8987)

Ours (34.12, 0.9091)
Figure 9. Visual comparison for 3x SR. Our result shows slightly sharper reconstruction of the beaks.

BSD 100 dataset our results are comparable to those ob-
tained by other approaches on this dataset, with ≈ 0.1 dB
lower PSNR than the results of A+ [34]. Our quantitative
results are slightly worse than the state-of-the-art in this

dataset since it is difficult to find geometric regularity in
such natural images, which our algorithm seeks to exploit.
Also A+ [34] is trained on patches that contain natural tex-
tures quite suitable for super-resolving the BSD100 images.



Table 1. Quantitative evaluation on Urban 100 and BSD 100 datasets. Red indicates the best and blue indicates the second best performance.

Metric Scale Bicubic ScSR [41] Kim [23] SRCNN [9] A+ [34] Sub-band [28] Glasner [15] Ours

PSNR (Urban )
2x 26.66 28.26 28.74 28.65 28.87 28.34 28.15 29.05
4x 23.14 24.02 24.20 24.14 24.34 24.21 23.79 24.67

SSIM (Urban)
2x 0.8408 0.8828 0.8940 0.8909 0.8957 0.8820 0.8743 0.8980
4x 0.6573 0.7024 0.7104 0.7047 0.7195 0.7115 0.6838 0.7314

PSNR (BSD)
2x 29.55 30.77 31.11 31.11 31.22 30.73 30.56 31.12
3x 27.20 27.72 28.17 28.20 28.30 27.88 27.36 28.20
4x 25.96 26.61 26.71 26.70 26.82 26.60 26.38 26.80

SSIM (BSD)
2x 0.8425 0.8744 0.8840 0.8835 0.8862 0.8774 0.8675 0.8835
3x 0.7382 0.7647 0.7788 0.7794 0.7836 0.7714 0.7490 0.7778
4x 0.6672 0.6983 0.7027 0.7018 0.7089 0.7021 0.6842 0.7064

HR(PSNR,SSIM)

Initialization

(24.35, 0.8804)

1 iteration

(24.42, 0.8834)

2 iterations

(24.52, 0.8874)

5 iterations
Figure 10. Effect of iterations. First row: HR and the SR results on
1, 2, and 5 iterations. Second row: the visualization of the nearest
neighbor field. Third row: the patch matching cost.

While we achieve slightly worse quantitative performance
on BSD100, our results are often visually more pleasing
than others and do not have artifacts.

Convergence of NNF estimation: We investigate the
effect of the number of iterations for nearest neighbor field
estimation using our algorithm in Fig. 10, for one step 2x
SR. We show the intermediate results after 1, 2, and 5 iter-
ations. The second row shows a visualization of the source
patch positions in the nearest neighbor field and the match-
ing cost in each stage. The in-place initialization (zero iter-
ations) already provides good matches for smooth regions.
We can see a significant reduction in the matching cost even
with one iteration. We use 10 iterations for generating all
our results.

Effect of patch size: Patch size is an important param-
eter for example-based SR algorithms. Larger patches may
be difficult to map to HR since they may contain complex
structural details. Very small patches may not contain suffi-
cient information to accurately predict their HR versions. In
Fig. 11, we plot PSNR/SSIM for patch sizes ranging from
3×3 to 15×15. We obtain these plots by averaging over 25
images. We observe that there is a wide range of patch sizes
for which our algorithm is able to perform consistently.

Limitations: Our method has difficulty dealing with fine
details when the planes are not accurately detected. We
show one such case in Fig. 12 where we fail to recover the
regular structures. Another limitation of our approach is

Figure 11. Quantitative performance as a function of patch size.

HR Ours

SRCNN [9] A+ [34]
Figure 12. A failure case with SR factor 4x.

processing time. While external database driven SR meth-
ods require time-consuming training procedures, they run
quite fast during test time [34, 33]. While our algorithm
does not require an explicit training step, it is slow to super-
resolve a test image. This drawback is associated with all
self-similarity based approaches [15, 28]. On average, our
Matlab implementation takes around 40 seconds to super-
resolve an image in BSD 100 by 2x with a 2.8 GHz Intel i7
CPU and 12 GB memory.

6. Concluding Remarks
We have presented a self-similarity based image SR

algorithm that uses transformed self-exemplars. Our al-
gorithm uses a factored patch transformation representa-
tion for simultaneously accounting for both planar per-
spective distortion and affine shape deformation of image
patches. We exploit the 3D scene geometry and patch
search space expansion for improving the self-examplar
search. In the absense of regular structures, our algorithm
reverts to searching affine transformed patches. We have
demonstrated that even without using external training sam-
ples, our method outperforms state-of-the-art SR algorithms
on a variety of man-made scenes while maintaining compa-
rable performance on natural scenes.



References
[1] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman.

Patchmatch: A randomized correspondence algorithm for
structural image editing. ACM Trans. on Graphics, 28(3):24,
2009. 2, 3, 5

[2] C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkel-
stein. The generalized patchmatch correspondence algo-
rithm. In ECCV, 2010. 3, 5

[3] M. Barnsley. Fractals Everywhere. Academic Press Profes-
sional, Inc., 1988. 1, 2

[4] M. Bleyer, C. Rhemann, and C. Rother. Patchmatch stereo-
stereo matching with slanted support windows. In BMVC,
2011. 2

[5] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm
for image denoising. In CVPR, 2005. 2

[6] H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution
through neighbor embedding. In CVPR, 2004. 1, 2

[7] O. Chum and J. Matas. Planar affine rectification from
change of scale. In ACCV, 2010. 5

[8] S. Darabi, E. Shechtman, C. Barnes, D. B. Goldman, and
P. Sen. Image melding: combining inconsistent images using
patch-based synthesis. ACM Trans. on Graphics, 31(4):82,
2012. 2, 3

[9] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep
convolutional network for image super-resolution. In ECCV,
2014. 1, 2, 5, 6, 7, 8

[10] M. Ebrahimi and E. R. Vrscay. Solving the inverse problem
of image zooming using self-examples. In Image analysis
and Recognition, 2007. 1, 2

[11] R. Fattal. Image upsampling via imposed edge statistics.
ACM Trans. on Graphics, 26(3):95, 2007. 2

[12] C. Fernandez-Granda and E. J. Candes. Super-resolution via
transform-invariant group-sparse regularization. In ICCV,
2013. 2

[13] G. Freedman and R. Fattal. Image and video upscaling from
local self-examples. ACM Trans. on Graphics, 30(2):12,
2011. 1, 2, 5

[14] W. T. Freeman, T. R. Jones, and E. C. Pasztor. Example-
based super-resolution. IEEE Computer Graphics and Ap-
plications, 22(2):56–65, 2002. 1, 2

[15] D. Glasner, S. Bagon, and M. Irani. Super-resolution from a
single image. In ICCV, 2009. 1, 2, 5, 6, 7, 8

[16] Y. HaCohen, R. Fattal, and D. Lischinski. Image upsampling
via texture hallucination. In ICCP, 2010. 2

[17] Y. HaCohen, E. Shechtman, D. B. Goldman, and D. Lischin-
ski. Non-rigid dense correspondence with applications for
image enhancement. In ACM Trans. on Graphics, vol-
ume 30, page 70, 2011. 3
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