
KL Divergence based Agglomerative Clustering for Automated Vitiligo Grading

Mithun Das Gupta1∗, Srinidhi Srinivasa2, Dr. Madhukara J.3, Dr. Meryl Antony3

IBM Research Labs, Bangalore India.1

Ricoh Innovations Pvt. Ltd., Bangalore, India.2

St. John’s Hospital, Bangalore, India.3

mithgupt@in.ibm.com, srinidhis@ripl.ricoh.com, madhudoc2009@yahoo.com, merylantony@hotmail.com

Abstract

In this paper we present a symmetric KL divergence
based agglomerative clustering framework to segment mul-
tiple levels of depigmentation in Vitiligo images. The pro-
posed framework starts with a simple merge cost based on
symmetric KL divergence. We extend the recent body of
work related to Bregman divergence based agglomerative
clustering and prove that the symmetric KL divergence is
an upper-bound for uni-modal Gaussian distributions. This
leads to a very powerful yet elegant method for bottom-
up agglomerative clustering with strong theoretical guaran-
tees. We introduce albedo and reflectance fields as features
for the distance computations. We compare against other
established methods to bring out possible pros and cons of
the proposed method.

Figure 1. Vitiligo patch and its annotation by an expert. The red
boundary marks the completely depigmented skin. The yellow
boundary is for the partially depigmented skin. All figures are
best viewed in colour.

1. Introduction

Vitiligo is the most common depigmenting disorder af-
fecting 0.5 − 1% of the worldwide population causing dis-
figurement and seriously lowers quality of life. Vitiligo
suffers from a lack of consensus on methods of assess-
ment, which makes it difficult to analyse or compare the
outcomes of different studies. Recently, the Vitiligo Area
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Scoring Index (VASI) [22] and the Vitiligo European Task
Force (VETF) [35] tools were proposed to offer more ac-
curate measures of disease severity indexes and treatment
evaluation criteria compared to simple clinical photogra-
phy. VASI provides a relatively simple method to measure
depigmentation over the entire patient body. Disease and
treatment outcomes can be assessed using a system devel-
oped by VETF, that combines analysis of extent, stage and
disease progression with respect to particular sites. Extent
is evaluated by the rule of nines [20], staging is based on
cutaneous and hair pigmentation, and spreading is assessed
based on Wood’s light examination. Objective methods to
measure the spread (area) have been reported by Van Geel et
al [38], but a detailed look at multiple regions of depigmen-
tation, especially for darker skin tones (type IV and V) has
largely remained an open challenge for the research com-
munity. Fig. 1 shows a typical patient with both partial as
well as completely depigmented regions. Several selection
criteria are of importance while considering surgical treat-
ment in vitiligo, namely, disease type, total disease exten-
sion, resistance to non-surgical therapy, disease stability and
age of the patients. Disease stability has been considered
to be the most important criterion in the selection. How-
ever, no consensus exists regarding the clinical evaluation
of disease activity. According to the literature, the major-
ity of authors classified vitiligo as being stable when fur-
ther progression of lesions or development of new lesions
were absent in the past year. Clinical observation of lesions
over time, leading to longitudinal recording of an objective
score for area with respect to depigmentation seems to be
an acceptable alternative. Consequently, accurate measure-
ment of lesion area for different depigmentation is of pri-
mary importance [1]. Due to the subjectivity involved in
the demarcation of the area boundary, as well as the inher-
ent difficulty of this task, subjective measurements such as
palm based eye-balling have been proposed [22]. Faint tran-
sitions between depigmented and pigmented skin patches
render edge based segmentation methods obsolete. Further,
illumination variations in a clinical setting can cause pixel
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based segmentation algorithms to end up with many false
positives. We propose a hierarchical KL divergence based
cluster agglomeration approach to principally create mean-
ingful segments to delineate patches with different levels of
pigmentation, with fewer false positives.

1.1. Related work in clustering

Agglomerative (bottom-up) hierarchical clustering algo-
rithms are important analysis tools for biological data es-
pecially gene analysis. Traditional hierarchical clustering
offers three measures of distance between two clusters,
namely: 1) the distance between the cluster centroids, 2)
the closest points not in the same cluster and 3) the fur-
thest points not in the same cluster. Furthermore, there are
many domains [40] where clusters naturally form a hierar-
chy wherein clusters are themselves part of other clusters.
Given pairwise dissimilarities between data points, hierar-
chical clustering produces a consistent result, without the
need to choose initial starting positions. The dissimilarity
measure is usually termed the linkage. Given the linkage,
hierarchical agglomerative clustering produces a sequence
of clustering assignments. At one end of the spectrum all
the points are in their own clusters, and on the other end all
the the points are in one cluster.

A number of works, in the recent past, present agglomer-
ative schemes for clustering with exponential families. The
ideology deals mainly with the perspective of KL diver-
gences between distributions, or the analogous goal of max-
imizing model likelihood, or lastly in connection to the in-
formation bottleneck method [10, 18, 25, 24, 19, 34, 9]. Ad-
ditional principled smoothing techniques for divergence de-
generacies were presented in [36]. Garcia et al. [19] propose
a choice of one sided or symmetric Bregman divergence to
cluster mixture models. Chaudhuri and McGregor [13] pro-
pose distribution clustering by KL divergence. They prove
that symmetric divergences namely, Hellinger and Jensen-
Shannon can be used as a relaxed metric, and the clustering
obtained can be arbitrarily close to that obtained by KL di-
vergence. The relationship between the symmetric KL di-
vergence and the generic merge cost has not been studied
yet, to the best of our knowledge. Nielsen and Nock [32]
argue that the minimizer for the Jensen-Shannon divergence
is the valid symmetric KL divergence which does not pro-
vide a closed form.

2. Symmetric KL Divergence based clustering

We propose symmetric Kullback-Leibler (KL) diver-
gence (Eq. 2) between the two normally distributed clusters,

as the preferred distance metric.

KLCi,Cj
= 1

2 (tr(Σ−1
j Σi) + (µj − µi)TΣ−1

j (µj − µi)

−d− ln |Σi|
|Σj | ) (1)

DSKL(Ci, Cj) = KLCi,Cj +KLCj ,Ci (2)

where Ci and Cj denote the clusters, (µ,Σ) denote the fea-
ture mean and covariance, and d is the feature dimension.
The log term and the inverse covariance term are obvious
bottlenecks in the formulation, which have kept researchers
away from using KL divergence based cost functions. In
the scenarios, where, the covariances are uniformly kept
away from becoming singular, KL divergence turns out to
be extremely useful divergence metric. For skin imaging
with patch based processes, the covariances over the fea-
tures seldom go to zero empirically. Additionally, we add
a small ridge to the covariance matrix [29, 12, 21] to guar-
antee the boundedness of the trace as well as the log ratio
terms. Optionally, as mentioned later in the text, the re-
gions may be pre-clustered to ensure that the covariances
are bounded away from being singular.

2.1. Convergence Analysis

Before presenting the convergence analysis we introduce
a few notations. An exponential family [11] is a set of para-
metric probability distributions {pF (x; θ)|θ ∈ Θ} whose
probability density (or mass) can be decomposed canoni-
cally as pF (x; θ) = e<t(x),θ>−F (θ)+k(x), where t(x) de-
notes the sufficient statistics, θ the natural parameter, F
the log-normalizer, and k(x) the auxiliary carrier measure.
< x, y >= xT y denotes the inner product of vectors. Let
Θ = {θ|

∫
pF (x; θ)dx < ∞} denote the natural parameter

space. It can be proved [11] that the log-normalizer F (θ)
is a strictly convex and differentiable function on an open
convex set Θ. The KL divergence between two members
q, r of the same exponential family can be written as [31]

KL(q, r) = BF (θr, θq) (3)

where BF (θr, θq) is the Bregman divergence computed
over the swapped natural parameters. Recently, Telgarsky
and Dasgupta [36] have proposed agglomerative clustering
with Bregman divergences. The generic merge cost for the
exponential family can now be defined as

Definition 1. [36] Let a proper convex relatively differen-
tiable F and two finite clusters C1, C2 be given. Then

4F,θ(C1, C2) =
∑

i∈{1,2}

wiBF (θCi
, θC1∪C2

) (4)

where wi = |Ci|/(|C1|+ |C2|) for i ∈ [1, 2] and |.| denotes
the size of the cluster.



The Bregman divergence based agglomerative clustering
method iteratively selects the pair Ci, Cj which minimizes
the merge cost in Eq. 4 and replaces the cluster with Ci ∪
Cj [36]. We claim that the symmetric KL divergence in
Eq. 2 is an upper bound for the merge cost in Eq. 4 and
hence minimizing the symmetric KL divergence leads to a
valid clustering algorithm.

Lemma 1. For a strictly convex function f on a closed in-
terval [a, b], let c = w1a + w2b be an interior point on the
interval, where w1 + w2 = 1 and w1, w2 ∈ R+, then

(b− a)(f ′(b)− f ′(a)) ≥ w1f(a) + w2f(b)− f(c).

The lemma can be proved based on the monotonic non-
decreasing slope property of convex functions on a closed
interval.1

Theorem 1. DSKL(C1, C2) ≥ 4F,θ(C1, C2)

Proof. For notational simplicity we denote F (θCi
) as Fi

and θCi
as θi for i = [1, 2] and F (θC1∪C2

) as F12 and
θC1∪C2

as θ12. Note that θ12 =
∑
i=[1,2] wiθi. Conse-

quently,

θ12 − θ1 = w2(θ2 − θ1) (5)
θ12 − θ2 = w1(θ1 − θ2) (6)
w1(θ12 − θ1) + w2(θ12 − θ2) = 0 (7)

4F,θ(C1, C2) = w1BF (θ1, θ12) + w2BF (θ2, θ12)

= w1(F1 − F12 − (θ1 − θ12)T∇F12) +

w2(F2 − F12 − (θ2 − θ12)T∇F12)

= (w1F1 + w2F2)− F12 (8)

where the last equality follows fromw1+w2 = 1 and Eq. 7.
From Eq. 3, the weighted KL divergence can be written as

DSKL(C1, C2) = KL(C1, C2) +KL(C2, C1)

= BF (θ2, θ1) +BF (θ1, θ2)

= (F2 − F1 − (θ2 − θ1)T∇F1) +

(F1 − F2 − (θ1 − θ2)T∇F2)

= (θ2 − θ1)T (∇F2 −∇F1) (9)

where the second equality follows from Eq. 3. Combining
everything, we need to show that

(θ2 − θ1)T (∇F2 −∇F1) ≥ (w1F1 + w2F2)− F12 (10)

which follows from Lemma. 1.

1Proof provided in the supplementary material.

3. Extension to Vitiligo image segmentation
We develop a Vitiligo image segmentation routine based

on the bottom up hierarchical agglomerative clustering al-
gorithm developed in the previous section. Superpixels pro-
vide a convenient primitive from which local image fea-
tures can be computed. They reduce the complexity of sub-
sequent image processing tasks and have become increas-
ingly useful for image segmentation. Consequently, we
use superpixels generated by the SLIC method proposed by
Achanta et al. [8] as image primitives. Vitiligo is an epi-
dermal (outer skin layer) disease leading to partial or total
loss of coloration of skin. This leads to higher reflection
from the diseased patches. The decomposition of a vitiligo
patch into its albedo field intrinsically means that the patch
can potentially be analysed without the high reflection con-
stituent. We introduce albedo and shading images as fea-
tures for vitiligo region segmentation according to different
stages of depigmentation. Zhu and Yuille [41], in their sem-
inal paper about region competition, had proposed albedo
images for skin image segmentation. We inherit the same
idea albeit with a modified albedo and shading generation
algorithm to work as multiplicative features for our hierar-
chical clustering based segmentation algorithm.

3.1. Separation into Albedo and Shading Images

We propose a modified formulation of the method pro-
posed by Chen and Koltun [14]. For a color image I , let A
and S be the albedo and the shading (or reflectance) images
respectively. Note that the shading field S is a non-linear
function of surface normals and illumination [14], but for
the development in this paper we restrict any further fac-
torization. For every pixel p, we write the factorization for
each channel separately as Icp = AcpS

c
p, where Acp is the

albedo value and Scp is the shading value for the cth chan-
nel. Transforming to log domain, we can write

log(Icp) = log(Acp) + log(Scp) ⇒ icp = acp + scp (11)

We formulate the channelwise energy minimization prob-
lem as,

min
Sc,Ac

E(Ic) =

data︷ ︸︸ ︷∑
∀p∈I

‖(Lp + ε)(icp − acp − scp)‖2 +

λ

reg︷ ︸︸ ︷∑
p,q∈Ñp

αcp,q‖acp − acq‖2 (12)

where λ is a relative weighting term, L =
∑
c I

c/
∑
c is

the luminosity (mean intensity across channels) and Lp is
the luminosity at pixel p, and ε ≈ 1−10 is a small constant
which ensures that the data term remains well behaved for



dark pixels in the logarithmic domain. Regularization is ap-
plied only on the albedo image and the shading image is left
unconstrained.

αcp,q =
(

1− ‖chc
p−ch

c
q‖

max
p,q∈Ñp

‖chc
p−chc

q‖

)√
LpLq (13)

where chcp denotes the ‘rg chromaticity’ [2] of pixel p for
channel c. For a multichannel image the rg chromaticity for
channel c is given by ch(Ic) = Ic/

∑
c I

c. Ñp denotes the
combined local as well as the random non-local (far away)
neighborhood for the pixel p. This combination preserves
the local neighborhood and also looks at far away pixels in
a principled manner. The number of non-local neighbors is
kept slightly higher than the local neighbors.

3.2. Superpixel Generation

Achanta et al. [8] proposed the simple linear iterative
clustering (SLIC) algorithm to generate superpixels from
color images. Due to the simplicity and speed of this
method, this has become one of the default methods to
generate superpixels for color images. The CIELAB color
[l, a, b] and the pixel coordinate [x, y] are used as the image
features. A new distance metric d was introduced in [8], by
simultaneously considering the image features and the size
of the superpixels:

d =

√
d2
f + d2

xy

m2

S
(14)

where S is the sampling interval and m is the compact-
ness of superpixels, such that larger m induces more com-
pact superpixels. df =

√∑
∇l2 represents the distance

in the color space and dxy =
√
∇x2 represents the dis-

tance in the coordinate space from the superpixel centroid.
Hexagonal grids facilitate six-connectedness as opposed to
four-connectedness in rectanglar grids. Consequently, we
adopt hexagonal units as the basic patch rather than rect-
angular units as proposed in [8]. The sampling interval S

for clusters is modified as
√
N/((

√
3/2)K) against rectan-

gular sampling interval
√
N/K where N is the number of

pixels, and K is the desired number of superpixels.
Boundary recall vs super-pixel size has been a known

engineering challenge in the field. For most of our experi-
ments we keep the number of super-pixels generated fairly
constant. For smaller images, this has the adverse effect of
generating very small regions within the super-pixels, lead-
ing to close to singular feature covariances. As mentioned
earlier, the guarantees for the KL divergence based cluster-
ing hold only if the covariances are bounded away from sin-
gular regions. As such an optional nearest neighbor based
merging of the super-pixels [17], where d =

√
d2
f + d2

xy is
performed to overcome the size vs boundary recall problem.

3.3. Features

The feature vector for individual pixels is a 10 dimen-
sional vector generated by stacking the following weighted
images. Let LAB be the CIELAB color image (3 chan-
nel), RGB the color image (3 channel), A the albedo im-
age (3 channel), S the shading image (3 channel), and
L =

∑
c I

c/
∑
c (1 channel) the luminosity of the image.

The feature image If is generated as

If =


LAB ∗ (1 + γS)
αRGB ∗ (1 + γS)
βA ∗ (1 + γS)

κL

 (15)

where α, β, γ and κ are free parameters to weight the dif-
ferent images and ∗ denotes channel wise multiplication.
Note that these are the features over which the clustering
algorithm, which is the core of this paper, works. Features
mentioned in Sec. 3.2 and again in Sec. 4 are internal to the
specific techniques. Based on aforementioned sections, we
present an outline for the proposed method in Algorithm 1.
Note that we use super-pixels and clusters interchangeably
throughout this work.

Algorithm 1 Algorithm outline for vitiligo image segmen-
tation by KL divergence based hierarchical clustering

Require RGB color image, number of final clusters cF
Generate albedo (A) and shading (S) images (Sec. 3.1)
Generate super-pixels (clusters) (Sec. 3.2)
Generate multi-dimensional feature set (Sec. 3.3)
repeat

Generate adjacency matrix for the clusters.
Compute pairwise affinity for neighboring super-
pixels (Eq. 2) in the feature space
Merge the 2 clusters with the lowest affinity and update
cluster statistics

until number of clusters == cF
return final clusters

4. Physiology Guided Label Merging
While performing data annotation it was observed that

the number of regions in the annotated ground truth images
varied widely amongst the images collected, thereby nulli-
fying the idea of a uniform stopping criteria for the cluster-
ing algorithms (proposed as well as comparison methods).
To counter this we propose a suitable stopping criterion as
cF = 15 clusters for all the methods, where cF is defined
in Algorithm. 1. One of the known short comings of bot-
tom up clustering methods is the fact that stopping criteria
for the method can be extremely ad hoc. Consequently, we
devised a top-down technique to merge the final few clus-
ters to physiologically meaningful labels. All the compar-



Figure 2. Label hypothesis generation and final labelling. The in-
put image is run through the ICA engine to generate the physio-
logical feature image. The physiological feature is used to learn
a Gaussian mixture model. The model is then used to generate a
label hypothesis, loosely resembling the ground-truth. The label
hypothesis is used in conjunction to the segmentation output to
generate the final labels.

ative methods reported in this paper were stopped at the
same pre-defined degree of over-segmentation (cF = 15).
Under-segmentation needs to be avoided strictly since it
may lead to valid regions (affected) being merged into the
background (normal skin). If we knew the ground truth up
front, then we can label all the clusters which fall on the
normal skin region as normal skin and all the clusters which
fall on the affected regions as affected, for both partial and
completely depigmented regions. Alternatively, we can in-
fer a label hypothesis via physiological analysis and test our
segmentation algorithm for that hypothesis.

To segregate a patch into normal and affected skin,
we perform independent component analysis (ICA) based
decomposition of the skin patch to the melanin and
haemoglobin components [37, 30]. The primary assump-
tion for such a decomposition is the fact that the visible
color of a skin pixel is obtained by a weighted addition of
melanin and haemoglobin basis colors with some additional
noise. The melanin and haemoglobin bases are assumed to
be independent of each other and hence the ICA principle
can be applied for the decomposition. The primary decom-
position can be written as

Lp = qmp cm + chpc
h + c (16)

⇒ [qmp , q
h
p ] = C̃−1Lp − k (17)

where Lp = − log[Rp, Gp, Bp] is the optical density vector
for the color channels at pixel p, cm and ch are pure density
vectors of melanin and haemoglobin respectively, qmp and
qhp are their relative quantities and c and k are assumed to be
spatially stationary vectors accounting for other pigments
and modeling errors. C̃ = [cm, ch] as estimated by the ICA
method. Linear combination of the form fp = ηqmp +ξqhp is
used as a feature to arrive at a coarse labelling of the image.
The complete data flow is shown in Fig. 2 ([η, ξ] = [1,−1]).
We learn a gaussian mixture model to identify the separa-
tion bounds in the physiological feature space. The feature
image is then coarsely labelled based on the likelihood to

the Gaussian mixture model [15]. This process generates
a hypothesis for the possible label distribution. This hypo-
thetical label distribution can now be used to merge the over
segmented clusters obtained from the clustering algorithm.
We compare each cluster with the label hypothesis and as-
sign it to the label which has the highest overlap with it.
The fused labels for all the methods with the same label hy-
pothesis as shown in Fig. 2 bottom right panel, are shown
in Fig. 3.

5. Experiments
We collected imaging data for 35 patients (15 female,

20 male) from easily accessible planar regions of the body,
namely back, forearm and dorsal palm. 25 patients were un-
stable Vitiligo cases and the rest were clinically stable cases.
The skin type distribution was, 7 with type III, 25 with type
IV and 3 with type V. Planar region was preferred by the
experts such that the annotations produced by them were of
the highest quality. More than one site was imaged for a
few patients leading to a total of 52 images. For all 52 im-
ages ground truth annotations were obtained from an expert
(first expert). Additional annotations for 10 images were
obtained from another (second) expert to compare inter-
operator variability for the proposed method. Note that out
of the 52 images only 31 had significant partially depig-
mented regions annotated by the first expert (Fig. 1, yellow
annotation). The remaining 22 were annotated as a single
completely depigmented region.

For the albedo and shading image generation part
(Eq. 12), λ was set to 0.45 for the experiments reported
in this paper. The superpixel generation parameters were
K = 300 and m = 12. Feature computation parameters
were fixed at {α, β, γ, κ} = {0.8, 0.1, 0.4, 0.5} for the ex-
periments reported in this paper. The proposed as well as
the comparison methods were implemented in C++ on an
Intel 2.5GHz 64 bit CPU with 12GB RAM.

5.1. Comparative Methods

We compared the performance of our segmentation tech-
nique against three state-of-the-art bottom-up segmentation
algorithms. Description of competitive methods and our ef-
forts in extracting optimal results from them are described
below. For all the methods, the algorithm stops at around 15
segments. The final segments are generated by the merging
technique explained in Sec. 4.

5.1.1 Segmentation by Weighted Aggregation (SWA)

SWA[33] is a bottom-up affinity based approach for im-
age segmentation. The algorithm is inspired by algebraic
multigrid (AMG) solvers of minimization problems of heat
or electric networks. It has instigated medical image seg-
mentation technique like [15]. For a given image, a graph
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Figure 3. Evaluation paradigm. The methods over-segment the image into multiple clusters. Each segment is compared against the label
hypothesis and labelled based on the maximum overlap criteria. The relabelled segments are then passed onto the numerical evaluation
stage.

is constructed such that every pixel is a node in the graph
and neighboring pixels are connected by an edge. A weight
is associated with the edge reflecting the affinities between
them. To find the minimal cuts in the graph, it is recursively
coarsened using a weighted aggregation procedure in which
repeatedly smaller sets of representative pixels (blocks) are
selected. These representative pixels do not have to lie on
a regular grid, giving rise to an irregular pyramid. The pur-
pose of these coarsening steps is to produce smaller and
smaller graphs that faithfully represent the same minimiza-
tion problem. In the course of this process segments that
are distinct from their environment emerge and they are de-
tected at their appropriate size scale. After constructing the
entire pyramid top down relaxation sweeps are performed
to associate each pixel with appropriate segment [3].

5.1.2 Multiscale Normalized Cut (MNCut)

MNCut algorithm[16, 4] is a bottom-up spectral image seg-
mentation technique based on multiscale graph cut princi-
ple. Typically, a fully connected graph is constructed with
pixels as nodes and pairwise pixel affinities based on con-
tour and intensity cues as edges. Pixels with strong affin-
ity values are then clustered together into image segments,
based on the normalized cut principle. However, compu-
tation of affinities for all pixel pairs is prohibitively ex-
pensive and has extensive memory requirements. A work
around proposed in [16] is to compress large graphs into
multiple scales, capturing image structure at increasingly
larger neighborhoods to create a compact affinity matrix
W with information from different scales. Generating a
diagonal matrix D as Di,i =

∑
j

Wi,j , and having a bi-

nary state variable X for each segment l, the cost function

to be maximized is : 1
2

K∑
l=1

XT
l WXl

XT
l DXl

, which is the optimal

cut on the graph. K largest eigen vectors corresponding to
the K largest eigen values are found to create K segments.
Choice of the number of layers and neighborhood radii in
each layer plays critical role in determination of segmenta-

tion quality and computational complexity. For our experi-
ments, we found that two layer graphs rendered meaningful
and smooth segments. cF = 15 segments were generated
for all images which were later refined to fewer segments
using the merging technique mentioned in Sec. 4.

5.1.3 Markov Random Field Segmentation

Markov Random Fields (MRF)[28] provide a general
bottom-up framework to solve classification and segmen-
tation problems. There is widespread interest in application
of MRFs for image segmentation [26, 39]. Assuming that
each pixel in an image has an unknown true label repre-
senting a region, MRFs are modeled to predict the labels by
striking balance between two energy terms, namely, global
energy and neighborhood smoothness energy. Global en-
ergy, also known as the data-term, is characteristic of dis-
tance of a pixel from a ‘label’ in the feature space. For the
experiments reported in this paper, we adopt the K-Means
cost function as the data term. Local energy is a charac-
teristic of neighborhood label similarity usually encoded by
Ising’s model [5]. We used a naive K-Means clustering al-
gorithm [23] to obtain an initial set of feature means for
MRF segmentation algorithm [6]. On an average, 25 itera-
tions were sufficient to achieve convergence.

5.2. Segmentation Quality

Empirically we found that segmenting the completely
depigmented region (Fig. 1, red contour) was easier than
segmenting the partially depigmented region (Fig. 1, yel-
low contour) as most of the methods missed the harder task
completely for a few cases. Fig. 4 shows the compari-
son amongst all the methods tested for the easier task of
segmenting the completely depigmented region. We adopt
Dice’s similarity coefficient (DC) [7] to evaluate segment
overlap quality, due to its wide spread acceptance within
the community. Dice’s similarity coefficient is computed as

D = 2
|A ∩B|
|A|+ |B|

(18)
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Figure 4. Boxplot for Dice’s similarity coefficient obtained for all
the methods. The proposed method and MNCut surpass other
methods in the easiest task of segmenting the completely depig-
mented region. Note that outliers for the proposed method lie
higher than those for MNCut (higher is better). Also note that
DC score zero means some cases were completely missed by the
methods.

where A,B are two segments, |.| is the number of pixels
and A ∩ B is the common region occupied by A and B.
Score of 1 results from exact overlap and score 0 in case of
absolutely no overlap.

We compare against the annotations obtained from the
first expert for all the 52 images and report the results. Our
method outperforms MRF and SWA and is comparable to
MNCut with respect to segmentatioin accuracy. Also note
that, for the easier task of segmenting the completely depig-
mented region, only the proposed method and MNCut were
able to find a positive DC for all the images in the dataset
as shown in Fig. 4. The average runtimes for the methods
were MRF (1.25 s), SWA (3.92 s), MNCut (53.35 s) and
proposed (8.59 s).

With the knowledge that MNCut and our proposed
method are the two best performing methods for the eas-
ier task, we report the subsequent harder experiment of seg-
menting the partially depigmented region, with respect to
these two methods only2. We compare the DC scores for
the partially depigmented region for the proposed method
against MNCut in Fig. 5. The dotted lines represent the
cases when the segmentation is completely missed by the
method. Note that MNCut missed 7 cases (blue dottes lines)
whereas the proposed method misses only 5 cases. More-
over, the cases missed by the proposed method were also
missed by MNCut, except for one case for which MNCut
registers an insignificant DC score of 0.006. We also com-
pare the two methods with respect to the Hausdorff dis-
tance (HD) from the ground truth. Hausdorff distance is
the longest of all distances from a point in one set to the
closest point in the other set. Small Hausdorff distance is
an indicator of strong boundary conformance while a large
value represents strong boundary mismatch. It is computed
as

dH(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)} (19)

2Similar experiments against all other methods are reported in the sup-
plementary material.

Figure 5. Dice’s similarity coefficients for the partially depig-
mented regions. Dotted lines represent missed cases.

Figure 6. Hausdorff Distance comparison (lower is better). Top:
complete depigmentation, bottom: partial depigmentation. Dotted
lines represent missed cases.

where d is the spatial distance, a, b represent pixel locations.
The comparisons against HD for the proposed method and
MNCut are shown in Fig. 6. From the experiments reported,
it can be safely concluded that the proposed method outper-
forms MNCut both in terms of run time as well as overall
performance based on the number of cases missed and aver-
age accuracy. Finally, a palette showing a few challenging
images with a range of skin tones and lighting variations is
shown in Fig. 7.

5.3. Inter-operator Variability

The multi-level segmentation outcome, is combined with
the stages recommended by the VETF( [27]) to come up
with an objective measurement of disease activity. We com-
pare the disease activity score against similar scores gener-
ated by two experts. We did not notice whitening of hair in
any patient, as such the inner segment (totally depigmented)
was given a score 2 and outer segments with partial depig-
mentation were given a score 1 [27]. The combined score
(2 ∗ areaCD + 1 ∗ areaPD), where CD stands for complete
depigmentation and PD stands for partial depigmentation,
for the two experts was compared against our method as
shown in Tab. 1. The Spearman’s rank correlation for our
method against expert 1 is 0.9998 and that against expert
2 is 0.9636, both with p − value < 0.05. Note that the
correlation between the two experts is also 0.9636, which



patient# 1 2 3 4 5 6 7 8 9 10
expert 1 20.827 0.293 2.818 9.614 27.362 17.034 29.552 5.200 5.493 9.307
expert 2 16.045 0.115 3.151 12.101 27.159 16.377 22.038 6.159 5.479 8.273
proposed 21.189 0.162 2.740 11.123 25.998 16.016 32.528 5.160 5.423 9.129

Table 1. Comparison of disease activity score across two experts and the proposed algorithm.

Original Image Ground truth Proposed MRF SWA MNCut

Figure 7. Final masks generated after label merging.

illustrates the reproducibility of the area based disease ac-
tivity measurement technique.

6. Conclusion

In this paper, we present a novel method to segment vi-
tiligo region with different levels of depigmentation. We
show that symmetric KL divergence based clustering is a
provable upper bound on Bregman divergence based clus-
tering for unimodal non singular Gaussians. We propose
a superpixel aggregation based segmentation method with
augmented albedo and shading features. We further develop
a physiology guided label merging technique which can be
used across several agglomerative as well as graph lapla-

cian based spectral clustering methods to arrive at mean-
ingful label configurations. We provide competitive evalua-
tion against established methods and show that the proposed
method outperforms or matches most of the existing tech-
niques both in performance as well as run time. We statis-
tically verify that the proposed method performs in concor-
dance with the evaluations of two expert dermatologists on
an objective disease activity score. In the future, we would
like to introduce saliency based costs into the framework
to identify stable regions and prune them from subsequent
merging. On the broader clinical front, we would like to
look into automatic identification of the VETF depigmenta-
tion stages, such that the entire pipeline can be automated
with minimum user intervention.
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