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Abstract

This paper addresses the problem of learning word im-
age representations: given the cropped image of a word, we
are interested in finding a descriptive, robust, and compact
fixed-length representation. Machine learning techniques
can then be supplied with these representations to produce
models useful for word retrieval or recognition tasks. Al-
though many works have focused on the machine learning
aspect once a global representation has been produced, lit-
tle work has been devoted to the construction of those base
image representations: most works use standard coding and
aggregation techniques directly on top of standard com-
puter vision features such as SIFT or HOG.

We propose to learn local mid-level features suitable for
building word image representations. These features are
learnt by leveraging character bounding box annotations
on a small set of training images. However, contrary to
other approaches that use character bounding box infor-
mation, our approach does not rely on detecting the indi-
vidual characters explicitly at testing time. Our local mid-
level features can then be aggregated to produce a global
word image signature. When pairing these features with
the recent word attributes framework of [4], we obtain re-
sults comparable with or better than the state-of-the-art on
matching and recognition tasks using global descriptors of
only 96 dimensions.

1. Introduction
In recent years there has been an increasing interest in

tasks related to text understanding in natural scenes, and,
amongst them, in word recognition: given a cropped image
of a word, one is interested in obtaining its transcription.
The most popular approaches to address this task involve
detecting and localizing individual characters in the word
image and using that information to infer the contents of
the word, using for example conditional random fields and
language priors [39, 19, 20, 5, 22]. As shown by Bissacco
et al. [5], such approaches that learn directly from the anno-

tated individual characters can obtain impressive accuracy if
large volumes of training data are available. However, these
approaches are not exempt from problems. First, to obtain
a high accuracy, one needs to annotate very large amounts
of words (in the order of millions) with character bounding
boxes for training purposes, as done by Bissaco et al. [5].
When limited training data is available, the recognition ac-
curacy of these approaches is much lower [19, 20]. Then, at
testing time, one needs to localize the individual characters
of the word image, which is slow and error prone. Also,
these approaches do not lead to a final signature of the word
image that can be used for other tasks such as word image
matching and retrieval.

Rather than localizing and classifying the individual
characters in a word, a new trend in word image recogni-
tion and retrieval has been to describe word images with
global representations using standard computer vision fea-
tures (e.g. HOG [8], or SIFT [17] features aggregated with
bags of words [7] or Fisher vector [24] encodings) and ap-
ply different frameworks and machine learning techniques
(such as using attribute representations, metric learning, or
exemplar SVMs) on top of these global representations to
learn models to perform tasks such as recognition, retrieval,
or spotting [26, 30, 2, 1, 3, 29, 4]. The global approaches
have important advantages: they do not require that words
be annotated with character bounding boxes for training and
they do not require that the characters forming a word be
explicitly localized at testing time. They can also produce
compact signatures which are faster to compute, store and
index, or compare, while still obtaining very competitive
results in many tasks. The use of off-the-shelf computer
vision features and machine learning techniques also makes
them very attractive. Yet, one may argue that not using char-
acter bounding box annotations during training, although
very convenient, may be a limiting factor for their accuracy.

The main contribution of this paper is an approach to
construct a global word image representation that unites the
best properties of both main trends by leveraging charac-
ter bounding boxes information at training time. This is
achieved by learning mid-level local features that are cor-
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related with the characters in which they tend to appear.
We use a small external dataset annotated at the charac-
ter level to learn how to transform small groups of locally
aggregated low-level features into mid-level semantic fea-
tures suitable for text, and then we encode and aggregate
these mid-level features into a global representation. This
unites advantages of both paradigms: a compact signature
that does not require localizing characters explicitly at test
time, but still exploits information about annotated charac-
ters. Although some works have already used supervised
information (in the form of text transcriptions) to project
a global image representation into a more semantic space
[29, 3], to the best of our knowledge, no other approach that
constructs global image representations has leveraged char-
acter bounding box information at training time to do so.

We test our approach on two public benchmarks of scene
text showing that constructing representations using mid-
level features yields large improvements over constructing
them using SIFT features directly. When pairing these mid-
level features with the recent attributes framework of [3, 4],
we significantly outperform the state-of-the-art in word im-
age retrieval (using both images or strings as queries), and
obtain results comparable to or better than Google’s Pho-
toOCR [5] in recognition tasks using a tiny fraction of train-
ing data: we use less than 5, 000 training words annotated
at the character level, while [5] uses several millions.

The rest of the paper is organized as follows. Section 2
reviews the related work. Section 3 describes our method.
Section 4 deals with the experimental evaluation. Finally,
Section 5 concludes the paper.

2. Related Work

We now review those works which are most related to
our approach.

Scene text recognition. Most works focusing on scene-
text target only the problem of recognition, i.e., given the
image of a word, the goal is to produce its transcription. In
such a case, a priori, there are no clear advantages with pro-
ducing a global image representation. Instead, most meth-
ods aim at localizing and classifying characters or character
regions inside the image and using this information to in-
fer the transcription. For example, Mishra et al. [19, 20]
propose to detect characters using a sliding window model
and produce a transcription using a conditional random field
model with language priors. Shi et al [34] localize and
classify characters jointly using a part-based tree-structured
model. Neumann and Matas [21, 22] use Extreme Regions
or Strokes to localize and describe characters. Words are
then recognized using a commercial OCR or by maximiz-
ing the characters’ probability. A recent method [41] uses a
mid-level representation of strokes to produce more seman-
tic descriptions of characters, that are then classified using

random forests. PhotoOCR [5] learns a character classifier
using a deep architecture with millions of annotated training
characters, and produces very accurate transcriptions at the
cost of requiring vast amounts of annotated data. In a dif-
ferent line, Jaderberg et al. [12] propose to learn the classi-
fication task directly from the image without localizing the
characters using deep convolutional neural networks. Al-
though the results on some tasks are impressive, this ap-
proach also requires millions of annotated training samples
to perform well.

Global representations for word images. More closely
related to our work are global representations. Producing
image signatures opens the door to other tasks such as word
retrieval, as well as easing tasks such as storing and index-
ing word images. Rusiñol et al. [30] construct a bag of
words over SIFT descriptors to encode word images, and
use it to perform segmentation-free spotting on handwritten
documents. In [1], this framework is enriched using textual
information. In [2], Exemplar SVMs and HOG descriptors
are also used to perform segmentation-free spotting on doc-
uments. Goel et al. [9] propose to recognize scene-text
images by synthesizing a dataset of annotated images and
finding the nearest neighbor in that dataset. Rodriguez et
al propose a label embedding approach that puts word im-
ages (represented with Fisher vectors) and text strings in
the same vectorial space [28, 29]. Similarly, Almazán et al.
[3, 4] propose a word attributes framework that can perform
both retrieval and recognition in a low dimensional space.
Although they perform well in retrieval tasks, they are out-
performed in recognition by methods that exploit annotated
character information, such as PhotoOCR [5].

Learning mid-level features. Our work is also related
to the use of mid-level features (e.g. [6, 14, 41]), where
“blocks” that contain some basic semantic information are
discovered, learned, and/or defined. The use of mid-level
features has been shown to produce large improvements in
different tasks. Of those works, the most related to ours
is the work of Yao et al. [41], which learns Strokelets, a
mid-level representation that can be understood as “parts”
of characters. These are then used to represent characters
in a more semantic way. The main distinctions between the
Strokelets and our work are that i), we exploit supervised
information to learn a more semantic representation, and
ii), we do not explicitly classify the character blocks, and
instead use this semantic representation to construct a high-
level word image signature. We show that our approach
leads to significantly better results than the Strokelets [41].
The embedding approaches of [3, 29] could also be under-
stood as producing supervised mid-level features, but do not
use character bounding box information to do so. To learn
the semantic space, we perform supervised dimensionality
reduction of local Fisher vectors that are then encoded and
aggregated into a global Fisher vector. This could be seen as
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Figure 1. Top. Standard word image description flow: low-level descriptors (e.g. SIFT) are first densely extracted and then encoded and
aggregated into a global representation using e.g. Fisher vectors (FV). Spatial pyramids may be used to add some weak geometry. Bottom.
Proposed approach: we first densely extract low-level descriptors. Then we densely extract blocks of different sizes, and represent each
block by aggregating the low-level descriptors it contains into a local FV with a 2× 2 spatial pyramid. These local FV representations are
then projected into a mid-level space correlated with characters. Finally, these mid-level features are aggregated into a global FV.

a deep Fisher network for image recognition [35], also used
very recently for action recognition [23]. The main differ-
ence is that in [35, 23] the supervised dimensionality reduc-
tion step is learned using the image labels, the same labels
that will be used for the final classification step. In our case,
the goal is to transfer knowledge from the individual charac-
ter bounding boxes, which are only annotated in the train-
ing set, to produce features that are correlated with char-
acters, and exploit this information in the target datasets,
where these bounding boxes are not available. This would
be similar to learning the extra layer of the deep Fisher net-
work using the labels of the bounding boxes of the objects,
instead of using the whole image label as [35] does. Al-
though the resulting architectures are similar, the motiva-
tion behind them is very different. In that sense, our work
can also be related to works on learning with privileged in-
formation [37, 33, 10], where the information available at
training time to construct the representations (in our case,
character bounding boxes) is not available at test time.

3. Mid-Level Features for Word Images

A standard approach to construct a global word image
representation is to i) extract low-level descriptors, ii) en-
code the descriptors, and iii) aggregate them into a global
representation, potentially with spatial pyramids [16] to add
some weak geometry. This representation can then be used
as input for different learning approaches, as done e.g. in
[30, 3, 29]. Figure 1 (top) illustrates this process.

In our proposed method, we aim at constructing global
representations based on semantic mid-level features in-
stead of using the low-level descriptors directly. The goal
is to produce features that might not be good enough to pre-
dict the individual characters directly, but are more corre-
lated with the individual characters than SIFT or other local

descriptors.
This is achieved not by finding and classifying character-

istic blocks as in [41], but by projecting all possible image
blocks into a lower-dimensional space where our mid-level
visual features and the characters are more correlated. By
projecting all possible blocks in an image, one obtains a set
of mid-level descriptors that can then be aggregated into a
global image representation. The process is illustrated in
Figure 1 (bottom).

In what follows, we first describe the learning process
and describe how to project the image blocks into the se-
mantic space correlated with the characters (Section 3.1).
We then describe how to extract these mid-level features
from a new image, and how to combine them with the word
attributes framework [4] to obtain very compact, discrimi-
native word representations (Section 3.2).

3.1. Learning Mid-Level Features

Let us assume that, at training time, one has access
to a set of N word images and their respective annota-
tions. Let I be one word image containing ncI charac-
ters, and let its annotation be a list of character bound-
ing boxes char bb and character labels char y, CI =
{(char bbi, char yi), i = 1 . . . ncI}. Each character label
char yi belongs to one of the 62 characters in the following
alphabet: Σ = {A, . . . ,Z,a, . . . ,z,0, . . . ,9}.

Let us denote with block bb a square block in the image
represented as a bounding box. For training purposes, let
us randomly sample from every image S blocks of different
sizes (e.g. 32 × 32 pixels, 48 × 48, etc) at different posi-
tions. Some of these blocks may contain only background,
but most of them will contain parts of a character or parts of
two consecutive characters.

We then describe these blocks using two modalities. The



first one is based on visual features. The second one is based
on character annotations. This second modality is more dis-
criminative but is only available during training.

Then, one can learn a mapping between the visual fea-
tures and the character annotation space. Once this mapping
has been learned, at testing time one can extract all possi-
ble blocks in an image, represent them first with low-level
visual features, and then map them into this semantic space
to obtain mid-level features, as seen in Figure 1 bottom.

Block visual features. To encode the visual aspect of the
blocks we use Fisher vectors (FV) [24] over SIFT descrip-
tors [17], with a 2 × 2 spatial pyramid [16] to add some
basic structure to the block. The descriptors are then `2-
normalized. It has been shown that power- and `2- nor-
malizing the Fisher vector usually leads to more discrimi-
native representations [27]. In this case, however, we only
apply an `2 normalization: the non-linearity introduced by
the power-normalization would make it more difficult to ef-
ficiently aggregate the block statistics (see Section 3.2 for
details). Fortunately, power normalization is most useful
when using large vocabularies [25]. With small vocabular-
ies (8 Gaussians in our case) the improvements due to power
normalization are very limited.

Finally, stacking the descriptors of all the sampled blocks
of all the training images leads to a matrix X of size
NS × Dv , where we denote with Dv the dimensionality
of these visual representations. In our experiments we will
use visual descriptors of Dv = 4, 096 dimensions.

Block annotations. The second view is based on the an-
notation and contains information about the overlaps be-
tween the blocks and the characters in the word image. The
goal is to encode with which characters the sampled blocks
tend to overlap. In particular, we are interested in encoding
what percentage of the character regions are covered by the
blocks. As a first approach, we construct a Da-dimensional
label y for each sampled block, withDa = |Σ| = 62. Given
a block, its label y is encoded as follows: for each character
Σd in the alphabet Σ, we assign at dimension d of the label
vector the normalized overlap between the bounding box of
the block and the bounding boxes of the characters of the
word whose label char yi equals Σd. Since the word may
have repeated characters overlapping with the same block,
we take the maximum overlap:

yd = max
(char bbi,char yi)∈CI

δi,d
|block bb ∩ char bbi|

|char bbi|
, (1)

where ∩ denotes the region intersection, | · | represents the
area of the region, and δi,d equals 1 if char yi = Σd and 0
otherwise. Figure 2 illustrates this with an annotated image
and a sampled block with its computed label y.

As with the first view, it is possible to encode all the
block labels of all the sampled blocks of all the training
images in a matrix Y ∈ RNS×Da .

(char_bb1, char_y1=S)

(char_bb2, char_y2=U)

(char_bb3, char_y3=N)

(U)(N)
y = { 0,..., 0.26,... 0.62,...,0}

Figure 2. Example of annotated word and a sampled block with
its label. The characters of the word contain bounding boxes (in
black) and label annotations (’S’,’U’,’N’). The image also shows
a sampled block (in red) with its respective computed label y. All
the elements of y are set to 0 except the ones corresponding to the
’U’ and ’N’ characters.

Adding character spatial information. The labels that
we introduced present a shortcoming: although they corre-
late blocks with characters, they do not encode which part
of the character they are correlated with. This is important,
since this type of information can have great discriminative
power. To address this problem, we split the ground-truth
bounding box character annotations in R × R character re-
gions (CR). One can consider a 1× 1 region (i.e., the whole
character), but also 2× 2 regions, 3× 3 regions, etc. Then,
the labels y encode the overlap of the block with each re-
gion of the character independently, leading to a label of
size RR2×Da :

yd,r = max
(char bbi,char yi)∈CI

δi,d
|block bb ∩ char bbir|

|char bbir|
, (2)

with r = 1 . . . R2, and where char bbir denotes the r-th
region of bounding box char bbi. This label is flattened
into RR2Da dimensions. One may also consider computing
labels at different character levels and concatenating the re-
sults in a final label before learning the projection, but we
did not find this to improve the results.

Learning the mid-level space. To find a mapping be-
tween X and Y one can use, for example, canonical corre-
lation analysis (CCA) [11]. CCA finds two projection ma-
trices U ∈ RDv×K and V ∈ RDa×K such that the corre-
lation in the projected space is maximized. To find U, one
only needs to solve a generalized eigenvalue problem. To
avoid numerical instabilities, a small regularization param-
eter η is typically used. When Dv and Da are small as in
our case, this is very fast, and needs to be solved only once,
offline. The K leading eigenvectors of the solution consti-
tute the columns of matrix U. One can easily choose the
output dimensionality K by keeping only a certain num-
ber of eigenvectors. Analogously, one can solve a related
eigenvalue problem to find V, although we do not use it
here since we will not have access to character bounding
boxes at test time. This process allows one to learn a matrix
U that projects X into a subspace of K dimensions that is
correlated with the labels Y.



Discussion. In the described system, the block labels en-
code which percentage of the characters or the character re-
gions are covered by the blocks. However, this is only one
possible way to encode the labels. Other options could in-
clude e.g. encoding which percentage of the block is cov-
ered, the intersection over union, or working at the pixel
level instead of the region level. Any representation that re-
lates the visual block with the character annotation could be
considered. We found that the proposed approach worked
well in practice and deemed the search for the optimum rep-
resentation out of the scope of this work.

3.2. Representing Word Images with Mid-Level
Features

Fast feature computation. Once the matrix U has been
learned, one can use it to compute the set of mid-level fea-
tures of a new word image. A naive approach would involve
extracting SIFT descriptors, encoding and aggregating the
FVs, and projecting them with U into the mid-level space
independently for each possible block. Unfortunately, this
process is not feasible in practice, as it would take a long
time to compute and project all the FVs for all the blocks
independently. Instead, we propose an approach to com-
pute these descriptors exactly in an efficient manner that
leverages the shared computations needed to encode differ-
ent blocks. The key idea is to isolate the contribution of
each individual SIFT feature towards the mid-level feature
of a block that included such a SIFT feature. If that contri-
bution is linear, one can compute the individual contribution
of each SIFT feature in the image and accumulate them in
an integral representation. Then, the mid-level representa-
tion of an arbitrary block could be computed with just 2
additions and 2 subtractions over vectors, and computing
all possible descriptors of all possible blocks becomes fea-
sible and efficient. Our approach works thanks to three key
properties:

1) The FV is additive when not performing any nor-
malization. Given a set of descriptors S, fv(S) =
1
|S|

∑
s∈S fv(s), since the FV aggregates the encoded de-

scriptors using average pooling. This is key since it im-
plies that we can compute FVs independently and then
aggregate them. This is also true if the descriptors are
projected linearly, i.e. UT fv(S) = 1

|S|
∑

s∈S U
T fv(s).

However, it is not true if we `2 normalize the FVs, i.e.,
fv(S)/||fv(S)||2 6= 1

|S|
∑

s∈S fv(s)/||fv(s)||2. Fortu-
nately, `2 normalization is not necessary, cf . next property.

2) The normalization of the FV is absorbed by the
normalization after the projection with U. If we let f be
an unnormalized FV and let f2 be the `2 normalized version,
then UT f2/||UT f2||2 = UT f/||UT f ||2. Even if we `2
normalize the FVs when learning the projection with CCA
(since `2 normalization greatly increases its discriminative
power), it is not necessary to `2 normalize them when rep-

resenting the words if they are also going to be normalized
after projection, which makes the aggregation of FVs seen
in property 1 possible. Note how the 1

|S| factor is also ab-
sorbed by the `2 normalization.

3) The projection of a FV with spatial pyramid is also
additive. Projecting a FV f with spatial pyramid with U is
equivalent to projecting each spatial region independently
with the corresponding rows of U and then aggregating the
results. Assuming spatial pyramids of 2 × 2, it is also pos-
sible to rearrange U into Û ∈ R

Dv
4 ×4K . In this case, pro-

jecting a FV without spatial pyramid with Û leads to a de-
scriptor of 4K dimensions. Each group of K dimensions
represents the results of projecting f assuming that it was
representing one of the 4 spatial quadrants of a larger block.

By exploiting these properties, we can compute the mid-
level descriptors of all possible blocks in an image in an ef-
ficient manner. In our approach we divide the target image
in contiguous, non-overlapping cells of p× p pixels, where
p controls the step size between two consecutive blocks .
We compute a FV in each of these regions with neither spa-
tial pyramids nor `2 normalization and project them with Û
into a space of 4K dimensions. This leads to a grid repre-
sentation of the image G ∈ R

H
p ×

W
p ×4K , where H and W

are the height and the width of the image. The “depth” of
the representation can be separated into 4 groups that repre-
sent the projection of that particular grid cell depending on
its position on the pyramid. Since the cells do not overlap,
computing the FVs of all those cells has approximately the
same cost as computing one single FV using the descriptors
of all the image. Keeping in memory H

p ×
W
p ×4K elements

at the same time is also not an issue. Finally, we compute
an integral representation over the height and the width, i.e.,
Ĝi,j,k =

∑
1≤a≤i,1≤b≤j Ga,b,k.

At this point, one can easily compute the descriptor of
any given block by i) separating the block in 4 different spa-
tial regions. ii) Computing the descriptor of each region in-
dependently with two sums and two subtractions on vectors
of dimension K by accessing the corresponding rows and
columns of the integral representation Ĝ, and by keeping
only the group of K dimensions corresponding to the par-
ticular spatial regions. iii) Aggregating the descriptors of
each spatial region, and iv) `2 normalizing the final result.

Van de Sande et al have recently proposed FLAIR, an
approach to efficiently compute region-based Fisher vec-
tors [36]. Our proposed approach is quite different, as, in
our case, there is an extra projection involved. Our bottle-
neck is not aggregating the Fisher vectors (which are low-
dimensional in our case) but the projection of each of the
regions into the semantic space.
Building word representations. The mid-level features
can then be encoded and aggregated into a global image
representation using e.g. Fisher vectors. These global im-
age representations can then be used by themselves, but can



also be used as building blocks to more advanced methods
that use global image signatures as input (e.g., [29, 4]). We
focus on the recent word attributes work of Almazán et al.
[4], with available source code and state-of-the-art results
in word image matching. This work uses Fisher vectors on
SIFT descriptors as a building block to predict character at-
tributes. The character attributes represent the presence or
absence of a given character at a given relative position of
the word (e.g., “word contains an a in the second half of the
word” or “word contains a d in the first third of the word”).
Word images are then described by the predicted attribute
scores. This attribute representation is then projected into
an embedded space correlated with embedded text strings
using CCA, which improves its discriminative power while
reducing its dimensionality. In our experiments we produce
global image signatures of only 96 dimensions.

A great advantage of this framework is that represen-
tations of images and strings can then be compared us-
ing a cosine similarity, providing a unified framework to
perform query-by-example (QBE) matching (i.e., retrieve
images of a dataset given a query image), query-by-string
(QBS) matching (i.e., retrieve images of a dataset given a
query text string), and recognition (i.e., retrieve text strings
given a query image). Since the approach is already based
on Fisher vectors, it is easy to replace the SIFT descriptors
in the pipeline of [4] with our mid-level features and mea-
sure exactly their contribution.

4. Experiments
We start by describing the data used for learning the mid-

level features and for evaluation purposes. We then describe
the evaluation protocols and report the experimental results.

4.1. Datasets

Evaluation datasets. We evaluate our approach on two
public benchmarks: IIIT5K [19] and Street-View Text
(SVT) [38]. IIIT5K is the largest public annotated scene-
text dataset to date, with 5, 000 cropped word images:
2, 000 training words and 3, 000 testing words. Each test-
ing word is associated with a small text lexicon (SL) of
50 words and a medium text lexicon (ML) of 1, 000 words
used for recognition tasks. Note that each word has a dif-
ferent lexicon associated with it. SVT is another popular
dataset with about 350 images harvested from Google Street
View. These images contain annotations of 904 cropped
words: 257 for training purposes and 647 for testing pur-
poses. Each testing image has an associated lexicon of 50
words. We also construct a combined lexicon (CL), that
contains every possible word that appears in the lexicons of
each dataset (1, 787 unique words on IIIT5K and 4, 282 on
SVT).
Learning dataset. Learning the proposed transforma-
tions requires gathering training words annotated at the

character level. Fortunately, pixel level annotations and
character bounding boxes exist for several standard datasets
[15]. We gathered annotations for ICDAR 2003 [18], Sign
Recognition 2009 [40], ICDAR 2011 [32], and IIIT5K [19]
– for IIIT5K, only the training set annotations were used.
In total, we gathered 3, 829 words annotated with approx-
imately 22, 500 character bounding boxes that are used to
learn the mid-level features transformation.

4.2. Implementation details

To construct our block FVs, we extract SIFTs [17] at 6
different scales, project them with PCA down to 64 dimen-
sions, and aggregate them using FVs (gradients w.r.t. means
and variances) with 8 Gaussians and a spatial pyramid of
2× 2, leading to a dimensionality Dv of 2× 64× 8× 4 =
4, 096. During training, we sample 150 blocks per training
image. In total, we sampled approximately 600, 000 blocks.
To learn the projection matrix U with CCA, we use a regu-
larization of η = 1e−4 in all our experiments.

To construct a global representation, we first extract all
mid-level blocks at 5 block sizes (16 × 16, 24 × 24, . . . ,
48 × 48) with a step size p of 4 pixels and K = 62 CCA
dimensions using the efficient approach described in Sec-
tion 3.2. Given images of 120 pixels in height, on average,
we can extract and describe all blocks in less than a second
using a MATLAB implementation and a single core. Then
we append the normalized x and y coordinates of the center
of the block as suggested by Sánchez et al. [31], and ag-
gregate using a global FV with a 2× 6 spatial pyramid with
16 Gaussians, leading to 24, 576 dimensions. These global
Fisher vectors are then power- and `2- normalized [27].

To construct the baseline global representation based
only on SIFT (with no mid-level features) we follow a very
similar approach, but instead of computing the mid-level
blocks and reducing their dimensionality down to 62 dimen-
sions with CCA, we use the SIFT features directly, reducing
their dimensionality down to 62 dimensions with PCA and
appending the normalized x and y coordinates of the center
of the patch. This mimics the setup of the word attributes
framework of [4]. We also experiment with reducing the
dimensionality of our mid-level features in an unsupervised
manner with PCA instead of CCA, to separate the influence
of the extra layer of the architecture from the supervised
learning.

When using word attributes, one has control of the fi-
nal dimensionality of the representations. We set this out-
put dimensionality to 96 dimensions. We observed that, in
general, accuracy reached a plateau around that point: af-
ter that, increasing the number of dimensions does not sig-
nificantly affect the performance. We found only one ex-
ception, where increasing the number of output dimensions
beyond 96 in one of the SVT experiments significantly im-
proved the results.



Table 1. Baseline results on query-by-example using Fisher vec-
tors (FV). In the case of the supervised mid-level features, we
evaluate the effect of the number of character regions (CR) used
during the learning of the features. See text for more details.

IIIT5K SVT

mAP P@1 mAP P@1
SIFT + FV 25.52 46.34 23.20 30.82
Unsup. mid-level + FV 20.32 38.10 18.38 25.68
Sup. mid-level (CR = 1× 1) + FV 33.96 52.20 29.75 37.46
Sup. mid-level (CR = 2× 2) + FV 41.35 60.20 34.29 42.60
Sup. mid-level (CR = 3× 3) + FV 42.73 61.48 37.38 45.92
Sup. mid-level (CR = 4× 4) + FV 43.34 61.72 37.98 46.83

4.3. Evaluation

We evaluate our approach with two different setups. In
the first one, we are interested in observing the effect of
using supervised and unsupervised mid-level features in-
stead of SIFT descriptors directly when computing global
word image representations, without applying any further
supervised learning. We compute Fisher vectors using a)
SIFT features, b) unsupervised mid-level features (i.e., di-
mensionality reduction of the block FVs with PCA), and
c) supervised mid-level features (i.e., dimensionality reduc-
tion with CCA). In this last case, we also explore the effect
of the number of character regions (CR) used to compute
the labels during training (cf . Equation (2)), from a 1× 1 to
a 4 × 4 region split. These FVs can be compared using the
dot-product as a similarity measure.

We measure the accuracy in a query-by-example re-
trieval framework, where one uses a word image as a query,
and the goal is to retrieve all the images of the same word
in the dataset. We use each image of the test set in a leave-
one-out fashion to retrieve all the other images in the test
set. Images that do not have any relevant item in the dataset
are not considered as queries.

We report results in Table 1 using both mean average
precision and precision at one as metrics. We highlight
three aspects of the results. First, using supervised mid-
level features significantly improves over using SIFT fea-
tures directly, showing that the representation encodes more
semantic information. Second, the improvement in the mid-
level features comes from the supervised information and
not from the extra layer of the architecture: the unsuper-
vised mid-level features perform worse than the SIFT base-
line. And, third, encoding which part of the characters the
blocks overlap with is more informative than only encoding
which characters they overlap with. We will use the 4 × 4
split for the rest of our experiments.

In the second set of experiments, we are interested in
measuring how state-of-the-art global word image repre-
sentations can benefit from these supervised features. In
particular, we focus on the recent word attributes work of
Almazán et al. [4], described in Section 3.2. We also ex-

Table 2. Retrieval results on IIIT5K and SVT datasets on the
query-by-example (QBE) and query-by-string (QBS) tasks.

Dataset Method QBE QBS

IIIT5K

Label Embedding [29] 43.70 -
[SIFT] + FV + Atts [4] 68.37 72.62
[Prop. Mid-features] + FV + Atts 75.77 78.61
[Prop. Mid-features + SIFT] + FV + Atts 75.91 78.62

SVT
[SIFT] + FV + Atts [4] 60.20 81.96
[Prop. Mid-features] + FV + Atts 62.68 83.83
[Prop. Mid-features + SIFT] + FV + Atts 65.94 85.36

plore the option of combining both FV representations (one
based on SIFT and the other based on mid-level features),
since their information may be complementary. To do so,
we concatenate the global representations based on SIFT
and mid-level features before learning the word attributes.
To ensure the fairness of the comparisons, we learned the
word attributes of [4] using a dataset comprised of the learn-
ing dataset described in Section 4.1 plus IIIT5K and SVT
(excluding the test set of the target dataset): word attributes
based on SIFT and word attributes based on mid-level fea-
tures have been trained using exactly the same images, and
only the type of annotations (text transcriptions only vs text
transcriptions and character bounding boxes) differs.

As in [4], we evaluate on three tasks: query-by-example
(QBE) – i.e., image-to-image retrieval –, query-by-string
(QBS) – i.e., text-to-image –, and recognition –i.e., image-
to-text. The accuracy of the QBE and QBS tasks is mea-
sured in terms of mean average precision. As is standard
practice, we evaluate recognition using the small lexicon
(SL) in IIIT5K and SVT, and the medium lexicon (ML) in
IIIT5K. We also evaluate on our more challenging com-
bined lexicon (CL). The recognition task is measured in
terms of precision at 1.

Retrieval results. In Table 2 we report the retrieval re-
sults on IIIT5K and SVT. On both datasets, using super-
vised mid-level features significantly improves over using
SIFT features directly, both on the query-by-example and
query-by-string tasks. Combining the mid-level features
and SIFT yields even further improvements on SVT. To the
best of our knowledge, the best reported results on query-
by-example and query-by-string on both datasets were those
of [4], and using mid-level features significantly improves
those results.

Recognition results. Table 3 shows the recognition re-
sults of our approach compared to the state-of-the-art. On
IIIT5K, our mid-level features improve over the best re-
ported results [4]. In the more difficult medium and com-
bined lexicons, these improvements are very noticeable:
from 82.07 to 85.93 and from 77.77 to 83.03. A simi-
lar trend can be observed on SVT, where the improvement
on the combined lexicon is very significant. Increasing the
output dimensionality from 96 to 192 dimensions also sig-
nificantly improves the accuracy on the SVT small lexicon



Figure 3. Qualitative query-by-example results for some IIIT5K queries. For each query, the first row displays the top retrieved images
using SIFT word attributes, and the second row displays the top retrieved images using the proposed mid-level features with word attributes.
Correct results are outlined in green.

Table 3. Comparison with the state-of-the-art on recognition ac-
curacy on the IIIT5K and SVT datasets with small (SL), medium
(ML), and combined (CL) lexicons. Methods marked with an ∗
use several millions of training samples.

Dataset Method SL ML CL

IIIT5K

High Order Language Priors [19] 64.10 57.50 -
Label Embedding [29] 76.10 57.40 -
Strokelets [41] 80.20 69.3 -
[SIFT] + FV + Atts [4] 91.20 82.07 77.77
[Prop. Mid-features] + FV + Atts 92.67 85.93 83.03
[Prop. Mid-features + SIFT] + FV + Atts 93.27 86.57 83.07

SVT

ABBY [9] 35.00 - -
Mishra et al. [20] 73.26 - -
Shi et al. [34] 73.51 - -
Synthesized Queries [9] 77.28 - -
Strokelets [41] 75.89 - -
*PhotoOCR [5] (in house training data) 90.39 - -
Deep CNN [13] 86.1 - -
*Deep CNN [12] (synthetic training data) 95.4 - -
[SIFT] + FV + Atts [4] 89.18 - 72.49
[Prop. Mid-features] + FV + Atts 89.49 - 73.42
[Prop. Mid-features + SIFT] + FV + Atts 90.73 - 76.51
[Prop. Mid-features + SIFT] + FV + Atts (192d) 91.81 - 76.51

recognition task up to an 91.81%. We only observed this
behavior in this particular case; other datasets and tasks do
not require larger representations.

The best reported results on SVT are those of [5] and
[12], both of which use millions of training samples. Us-
ing a fraction of the training data we obtain results better
than PhotoOCR [5], but are outperformed by Jaderberg et
al. [12]. Our method has other advantages such as lead-
ing to tiny (96-192 dimensions) signatures that can be used
for image-to-image and text-to-image matching. Compared
to methods that do not use millions of training samples
[20, 9, 41, 13] , our results are significantly better.
Qualitative results. Figure 3 shows qualitative results of
the query-by-example task for some IIIT5K queries. In the

more difficult queries (e.g. “Before” or “HOUSE”) the mid-
level features are clearly superior. In general, even when the
retrieved results are not correct, they are closer to the query
than when using SIFT features directly.

5. Conclusions
In this paper we have introduced supervised mid-level

features for the task of word image representation. These
features are learned by leveraging character bounding box
annotations at training time, and correlate visual blocks
with the characters and the character regions in which such
blocks tend to appear. Despite using character information
at training time, one key advantage is that it does not re-
quire localizing characters explicitly at testing time. In-
stead, our mid-level features can be densely extracted in
an efficient manner. We used these mid-level features as
a building block of the word attributes framework of [4].
The proposed mid-level features outperform equivalent rep-
resentations based on SIFT on two standard benchmarks us-
ing tiny signatures of only 96 dimensions, and obtain state-
of-the-art results on retrieval and recognition tasks. We fi-
nally note that the proposed approach can be seen as a way
to learn mid-level features from annotated parts at training
time (characters and character regions in our case) without
explicitly localizing them at testing time. We believe that
the key ideas behind these mid-level features are not limited
to text, and could be exploited well beyond the scene-text
domain, e.g., for generic object categorization.
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