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Abstract
In texture synthesis and classification, algorithms re-

quire a small texture to be provided as an input, which is
assumed to be representative of a larger region to be re-
synthesized or categorized. We focus on how to characterize
such textures and automatically retrieve them. Most works
generate these small input textures manually by cropping,
which does not ensure maximal compression, nor that the
selection is the best representative of the original. We con-
struct a new representation that compactly summarizes a
texture, while using less storage, that can be used for tex-
ture compression and synthesis. We also demonstrate how
the representation can be integrated in our proposed video
texture synthesis algorithm to generate novel instances of
textures and video hole-filling. Finally, we propose a novel
criterion that measures structural and statistical dissimilar-
ity between textures.

1. Introduction
“Visual textures” are regions of images that exhibit some

form of spatial regularity. They include the so-called “regu-
lar” or “quasi-regular” textures (Fig. 2 top-left), “stochas-
tic” textures (top-right), possibly deformed either in the
domain (bottom-left) or range (bottom-right). Analysis of
textures has been used for image and video representation
[41, 14], while synthesis has proven useful for image super-
resolution [11], hole-filling [9] and compression [35].

For such applications, large textures carry a high cost on
storage and computation. State-of-the-art texture descrip-
tors such as [7, 31] are computationally prohibitive to use on
large textures. These issues are especially acute for video,
where the amount of data is significantly larger.

Typically, these descriptors as well as texture synthesis
algorithms assume that the size of the input texture is small,
and yet large enough to compute statistics that are repre-
sentative of the entire texture domain. Few works in the
literature deal with how to infer automatically this smaller
texture from an image and even fewer from a video. In most
cases, it is assumed that the input texture is given, usually

Figure 1. Reconstructed frame in a video at 40% compression.
Left: Video Epitome [6], Right: Our approach. Below: Zoomed-
in view of the red box. Our method improves reconstruction of
both homogeneous and textured areas.

manually by cropping a larger one. Wei et. al. [37] pro-
pose an inverse texture synthesis algorithm, where given
an input texture I , a compaction is synthesized that allows
subsequent re-synthesis of a new instance Î . The method
achieves good results, but it is semi-automatic, since it re-
lies on external information such as a control map (e.g. an
orientation field or other contextual information) to synthe-
size time-varying textures and on manual adjustment of the
scale of neighborhoods for sampling from the compaction.

We propose an alternative scheme, which avoids using
any external information by automatically inferring a com-
pact time-varying texture representation. The algorithm
also automatically determines the scale of local neighbor-
hoods, which is necessary for texture synthesis [9]. Since
our representation consists of samples from the input tex-
ture, for applications such as classification [7, 31], we are
able to avoid synthesis biases that affect other methods [37].

Our contributions are to (i) summarize an image/video
into a representation that requires significantly less storage
than the input, (ii) use our representation for synthesis us-
ing the texture optimization technique [19], (iii) extend this
framework to video using a causal scheme, similar to [9]
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Abstract—We formalize a notion of “visual texture” as a sample of a
process that exhibits some form of statistical regularity. We characterize
it in terms of approximate sufficient statistics and show how the definition
yields inference algorithms for compression (sufficient dimensional-
ity reduction), extrapolation/inpainting, segmentation, rectification, and
shape analysis that achieve or exceed state-of-the-art performance.
More importantly, however, we provide an analytical framework to study
textures and their relation to other early-vision operations such as
correspondence. We prove that sparse features, that result from co-
variant detection, are the complement of textures, so the image can
be partitioned into two qualitatively different processes at each scale.
Such a decomposition, however, requires a proper sampling condition
to be satisfied, which can only be decided given multiple images of the
same scene. The manuscript is intended to have pedagogical value, as
it points out the relationship between the notion of texture and other
low-level vision operations, in the context of visual recognition.

1 INTRODUCTION

1.1 Related work
This manuscript formalizes the notion of texture and
clarifies its relationship to other low-level vision oper-
ations. As such it relates to a vast body of work, so we
are conscious that we may be omitting work on texture
analysis ([12] and references therein), texture segmenta-
tion ([5] and refs.), perception of texture ([11] and refs.),
and texture synthesis and mapping ([3] and refs.). We
do not address the phenomenology that gives rise to a
texture (e.g., “3-D textures” generated by the interplay
of shape and illumination [16] vs. “decal textures” due
to the radiance of the surfaces) and the computational
algorithms used to pool the statistics (e.g., patch-based
[18] vs. statistical vs. geometric [?] methods). We refer the
reader to more extensive treatises, surveys and edited
volumes such as [4] for a broader view of the texture
literature.

Figure 1 shows examples of so-called “regular tex-
tures,” regions of images where some elementary structure
is repeated more or less regularly. Such “elementary
texture element” is sometimes called a “texton” [7]. The
images in Figure 2, however, do not contain any such
elementary structure, but still exhibit some kind of spa-
tial regularity, and are often called “stochastic textures.”
As the name suggests, there is an unpredictable element:
What is spatially regular, or even homogeneous, is some
kind of ensemble property of the image.

Figures 5 (top) and 3 show examples of what would be
perceived as “texture” in a way that is no different than
Fig. 1 or 2, even though there is no translation-invariant

Fig. 1. Regular textures

Fig. 2. Stochastic textures

statistic to be found. Indeed, these images would look
no different than those in Fig. 1-2 if we could apply a
transformation to either the domain (Fig. 5) or the range
(Fig. 3) of the images that somehow “undoes” or inverts
transformations undergone by the scene in the image-
formation process.

In Fig. 5 (bottom) one can clearly resolve “structures”
in the scene (branches, trunks, etc.) in the portion of the
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Fig. 4. Testing the definition of texture. Both images
satisfy the definition of texture, despite the one on the left
being often called “textureless.” Random-dot displays en-
able binocular correspondence [6], which seems to contra-
dict Theorem ??. This conundrum is solved by observing
that scale, composed with quantization, is not a group,
and by introducing the notion of “proper sampling” in
Section ??.

Fig. 5. Interplay of texture and scale. Whether some-
thing is a texture depends on scale, and “structures” can
appear and disappear across scales. Such “transitions”
can be established in an ad-hoc manner using complexity
measures as in Figure ??, or they can be decided by
analyzing multiple views of the same scene through a
notion of proper sampling introduced in Section ??.

scene that is closest to the image. However, as the trees
recede further, more of their branches are binned into
one pixel, and therefore we cannot resolve them from the
image. All we can ascertain from the image is ensemble
properties of the scene, i.e. statistics, that lead us towards
the notion of texture.

The well-known consequence is that “texture” is not
a property of the scene, but instead a property of the
imaging conditions under which the data are captured,
i.e., a property of the nuisances of the data formation
process. So, the same tree in Fig. 5 can be described as
a texture or a collection of “structures” depending on
how close we are to it, the resolution of the camera,
the resolving power of the lens, the amount of noise
etc. This phenomenon has prompted some authors to
characterize the “transition” from structure to texture
based on image statistics. That is, to determine the
scale at which one can go from describing the image
as a collection of individual structures and their spa-
tial arrangement, to describing ensemble properties and
their stationary statistics. This, however, presents several
problems. First, this transition is not unique. As is well-
known [9], two-dimensional scale-spaces do not enjoy a
causality principle, so it is possible for a neighborhood
of a point in the image to be described as “structure” at
a certain scale, then texture at coarser scales, then again
structure at yet coarser scales, and so on.1 This is clearly
visible in Fig. ??, where the entropy profile in a growing
region around a point on the image follows a “staircase”
behavior, with statistics being invariant (texture) in the
flat regions, marked by sharp transitions (structures) oc-
curring multiple times as the scale increases. The second
problem is that such transitions are not a property of
the scene, or even a joint property of the scene and
the vantage point, as they change with the resolution
of the image, the optics of the lens, the quantization and
pre-processing algorithm applied by the digital camera
etc. (the same scene, viewed from the same vantage
point, presents different transitions depending on the
characteristics of the lens and the sensor that captured
the image).

More importantly, however, this phenomenon brings
into question the role of texture analysis for recog-
nition. In fact, in many vision-based decision tasks –
detection, recognition, categorization, and more general
correspondence – the vantage point, quantization phe-
nomena, optical characteristics etc. are nuisance factors
that affect the image but have nothing to do with the
underlying scene that we are trying to recognize. Any
intermediate decision that is not related to the task, as
for instance the unique partitioning of the image into
texture and structure, entails a loss of performance in
any decision downstream. This stems directly from the
Data Processing Inequality ([2] Theorem 2.8.1), and Rao
and Blackwell’s theorem [13], page 88. Instead, in an

1. Note that if images had infinite resolution, such quantization
artifacts would never arise, as one could always zoom in close enough
to resolve any structure in the radiance.

Figure 3: Interplay of texture and scale. Whether something is a texture depends on scale, and
“structures” can appear and disappear across scales. Such “transitions” can be established in an ad-hoc
manner using complexity measures as in Figure ??, or they can be decided by analyzing multiple
views of the same scene through a notion of proper sampling introduced in Section ??.

ascertain from the image is ensemble properties of the scene, i.e. statistics, that lead us towards the
notion of texture.

2 Background

We consider digital images {Iij}(i,j)=1:(N,M) 2 RM⇥N and their continuous abstractions I : D ⇢
R2 ! R; x 7! I(x). A sample Iij is obtained by averaging the function I(·) on a neighborhood B
of the point xij 2 D of size ✏ > 0. In general, Iij = I(xij) + nij where nij = nij(I) is the (spatial)
quantization error.

We consider groups of transformations of the sensor plane, g : D ⇢ R2 ! R2; x 7! g(x), and
denote their induced action on the image by I � g

.
= I(g(x)). The simplest instance is the translation

group, represented by a translation vector T 2 R2, via g(x)
.
= x + T , so that I � g(x)

.
= I(x + T ).

Each group element g 2 G determines a “frame,” for instance in the Euclidean plane, the translation
group determines a reference frame with origin at the point T 2 R2. Similarly, an element of the
Euclidean group g = (R, T ) 2 SE(2), where R is a rotation matrix (RT R = I and det(R) = 1),
determines a reference frame with origin at T and coordinate axes aligned with the columns of R.
All the considerations below apply to other finite-dimensional Lie groups of the plane including
Euclidean, similarity, affine, and projective. Some considerations also apply to (infinite-dimensional)
planar diffeomorphisms, but with some technical complications.

2.1 Structures

Canonization is a constructive process to eliminate the effects of a group G acting on the data (the set
of images I). The group organizes the data into orbits; a covariant detector identifies a canonical
element of each orbit that co-varies with the group; in the corresponding (moving) frame, the data is
then independent of the group.

A differentiable functional  : I ⇥ G ! R; (I, g) 7!  (I, g) is said to be local, with effective
support ✏ if its value at g only depends on a neighborhood of the image of size ✏ > 0, up to a residual
that is smaller than the mean quantization error. For instance, for a translational frame g, if we call
I|B✏(g)

an image that is identical to I in a neighborhood of size ✏ centered at position g ⌘ T , and zero
otherwise, then  (I|B✏(g)

, g) =  (I, g) + ñ, with |ñ|  1
NM

P
i,j |nij |. For instance, a functional

that evaluates the image at a pixel g ⌘ T = x 2 B✏(xij), is local with effective support ✏. For groups
other than translation, we consider the image in the reference frame determined by g, or equivalently
consider the “transformed image” I � g�1.

4

2

Fig. 3. Range-deformed textures

test the definition

8

Fig. 4. Testing the definition of texture. Both images
satisfy the definition of texture, despite the one on the left
being often called “textureless.” Random-dot displays en-
able binocular correspondence [6], which seems to contra-
dict Theorem ??. This conundrum is solved by observing
that scale, composed with quantization, is not a group,
and by introducing the notion of “proper sampling” in
Section ??.

Fig. 5. Interplay of texture and scale. Whether some-
thing is a texture depends on scale, and “structures” can
appear and disappear across scales. Such “transitions”
can be established in an ad-hoc manner using complexity
measures as in Figure ??, or they can be decided by
analyzing multiple views of the same scene through a
notion of proper sampling introduced in Section ??.

scene that is closest to the image. However, as the trees
recede further, more of their branches are binned into
one pixel, and therefore we cannot resolve them from the
image. All we can ascertain from the image is ensemble
properties of the scene, i.e. statistics, that lead us towards
the notion of texture.

The well-known consequence is that “texture” is not
a property of the scene, but instead a property of the
imaging conditions under which the data are captured,
i.e., a property of the nuisances of the data formation
process. So, the same tree in Fig. 5 can be described as
a texture or a collection of “structures” depending on
how close we are to it, the resolution of the camera,
the resolving power of the lens, the amount of noise
etc. This phenomenon has prompted some authors to
characterize the “transition” from structure to texture
based on image statistics. That is, to determine the
scale at which one can go from describing the image
as a collection of individual structures and their spa-
tial arrangement, to describing ensemble properties and
their stationary statistics. This, however, presents several
problems. First, this transition is not unique. As is well-
known [9], two-dimensional scale-spaces do not enjoy a
causality principle, so it is possible for a neighborhood
of a point in the image to be described as “structure” at
a certain scale, then texture at coarser scales, then again
structure at yet coarser scales, and so on.1 This is clearly
visible in Fig. ??, where the entropy profile in a growing
region around a point on the image follows a “staircase”
behavior, with statistics being invariant (texture) in the
flat regions, marked by sharp transitions (structures) oc-
curring multiple times as the scale increases. The second
problem is that such transitions are not a property of
the scene, or even a joint property of the scene and
the vantage point, as they change with the resolution
of the image, the optics of the lens, the quantization and
pre-processing algorithm applied by the digital camera
etc. (the same scene, viewed from the same vantage
point, presents different transitions depending on the
characteristics of the lens and the sensor that captured
the image).

More importantly, however, this phenomenon brings
into question the role of texture analysis for recog-
nition. In fact, in many vision-based decision tasks –
detection, recognition, categorization, and more general
correspondence – the vantage point, quantization phe-
nomena, optical characteristics etc. are nuisance factors
that affect the image but have nothing to do with the
underlying scene that we are trying to recognize. Any
intermediate decision that is not related to the task, as
for instance the unique partitioning of the image into
texture and structure, entails a loss of performance in
any decision downstream. This stems directly from the
Data Processing Inequality ([2] Theorem 2.8.1), and Rao
and Blackwell’s theorem [13], page 88. Instead, in an
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Figure 2. Regular, stochastic, domain- and range-deformed tex-
tures.
and show results for multiple time-varying textures, (iv)
synthesize multiple textures simultaneously on video with-
out explicitly computing a segmentation map, unlike [40],
which is useful for hole-filling and video compression, (see
Fig. 1), and (v) propose a criterion (“Texture Qualitative
Criterion” (TQC)) that measures structural and statistical
dissimilarity between textures.

2. Related work
Our work relates to texture analysis ([26, 21, 18, 23]

and references therein), perception ([25] and refs.), synthe-
sis and mapping ([9] and refs.). We do not address phe-
nomenology (e.g. “3-D textures” generated by the inter-
play of shape and illumination [32] vs. “decal textures” due
to radiance) and the algorithms used to pool statistics (e.g.
patch-based [34], statistical [12], geometric [42] methods).
We refer the reader to [15] for a more extensive survey.

Some work has been done in summarizing images (epit-
ome [16] and jigsaw [17]) and video [6, 39]. These meth-
ods do not handle textures explicitly and as a result, their
reconstructed textures suffer. [16, 17, 6] are also not able to
extend textures to larger domains, since they rely on an ex-
plicit mapping between the input image/video and the sum-
marization. Other schemes aim to compact the spectral en-
ergy into few coefficients [2, 10, 27]. [35] compresses regu-
lar textures, but fails with stochastic ones. Our work models
textures explicitly and hence achieves both high compres-
sion rates and high quality synthesis results.

In video texture synthesis, there are several works rang-
ing from pixel-based ([1], [38]), to patch-based [20], to
parametric [8]. Our work falls in the patch-based category.

3. Textures
“Visual textures” are regions of images that exhibit spa-

tial regularity. To characterize them, we use the notions of
Markovianity, stationarity and ergodicity. We denote an im-
age by I : ∆ → R+, where ∆ = (1, 1) : (X,Y ) is the
pixel lattice. Statistics, or “features”, map the image onto
some vector space and local features operate on a subset of
the image domain. Formally, a local statistic is defined on
ω ⊂ ∆ as a function θω : {I : ∆ → R+} → RK ; I 7→
θω(I) that only depends on the values of the image I(x, y)

for (x, y) ∈ ω. A distribution on I , dP (I) induces a distri-
bution on θω via dP (θω)

.
= dP (θω(I)).

In order to exploit spatial predictability, we leverage on
the existence of a statistic that is sufficient to perform the
prediction. This is captured by the notion of Markovianity.
We say that a process {I} is Markovian if every set Π ⊂
∆ admits a neighborhood N(Π) and a statistic θN(Π) that
makes I(Π) independent of the “outside” I(Πc). Πc is the
complement of Π in a region Ω ⊂ ∆, where Ω corresponds
to the texture region (see Fig. 3):

I(Π) ⊥ I(Πc) | θN(Π). (1)
This condition makes the process {I} with measure dP (I)
a Markov Random Field (MRF), and establishes θN(Π) as
a sufficient statistic for I(Π). In general, N(Π) could cor-
respond to many regions, for instance ω = Ω\Π. In de-
scribing a texture, we seek the smallest ω, in the sense of
minimum area (“scale”) |ω| = r, so the corresponding θω is
a minimal (Markov) sufficient statistic. Of particular interest
is the case when such a neighborhood is spatially homoge-
neous1, as is the case in a stationary MRF.

A process {I} is stationary if statistics are translation
invariant. More formally, {I} is stationary in θω if,

E(θω) = E(θω+T ), T ∈ R2 | ω + T ⊂ Ω. (2)
Such condition may be satisfied only after transformations
of the image domain and range (as in deformed textures,
Fig. 2)2. Note that unless the process is defined on the entire
plane, one has to restrict the set of T to allowable transla-
tions to ensure Eq. (2) is computed where θω+T is defined.

To test whether a process is stationary from just one sam-
ple, we have to assume it is ergodic, meaning that the sam-
ple statistics converge to the ensemble ones:

1

N

N∑

i=1

θω+Ti
a. s.−→ E(θω), (4)

for all admissible Ti. Given Ω, we can test whether the
process {I} is stationary in this region, by approximating
statistics θω using samples in a neighborhood ω̄ ⊂ Ω. The
larger the size of ω̄, the better the approximation of the
statistics, but the lower the compression achieved. There-
fore, we seek the smallest possible ω̄ that allows inferring
the statistics “sufficiently well”. Assuming that such ω̄ is
found, we can test for stationarity by translating it and test-
ing whether the resulting statistics remain “sufficiently con-
stant”. This, however, can only be tested for admissible
translations that keep ω̄ within Ω.

1Spatially homogeneous means that ω = ω(Π) can be written in terms
of neighborhoods of each pixel x = (x, y) within Π, and the smallest
Markov neighborhood of a pixel, ω(x), is translation invariant, i.e., its
shape does not change as we translate x: ω(x + T ) = ω(x) + T .

2For a group G acting on the domain of I via I(x, y) 7→ I(g(x, y))
and a group H acting on the range via I(x, y) 7→ h(I(x, y)), we say that
the process {I} is G−H stationary in θg(ω) if,
E(θg(ω)(h(I))) = E(θg(ω)+T (h(I))), T ∈ R2 | ω + T ⊂ Ω. (3)

Such transformations can be inferred by a model selection criterion. Tex-
tures can be rectified by applying the inverse action g−1, h−1 to the data.



Figure 3. Left: A subset of the image domain, Π, with its local
neighborhood. Ω denotes the domain of the texture. Right: Tex-
ture representation θω̄ and samples drawn from Ω.

We define a texture as a region Ω of an image I that can
be rectified into a sample of a stochastic process that is sta-
tionary, ergodic and Markovian. A texture is parametrized
by the following quantities: (a) The Markov neighborhood
ω and its Markov scale r = |ω|, (b) the stationarity region ω̄
and its stationarity scale σ = |ω̄|, (c) the minimal sufficient
statistic θω defined on ω, and (d) Ω, the texture region. Note
that ω ⊂ ω̄ ⊂ Ω.

3.1. Texture Representation

We initially assume (and later relax) that Ω = ∆. The
representation should have smaller complexity than the col-
lection of pixel values in Ω and allow extrapolation beyond
Ω, traits not shared by [7, 31], but the latter can be used to
further reduce complexity in classification applications.

In a non-parametric setting, θω is a collection of sample
image values. ω̄ .

=
⋃
λ=1,...,Λ ωλ is the union of Λ sample

regions ωλ, each a Markov neighborhood of a pixel with
coordinates (xλ, yλ). Collectively the neighborhoods cap-
ture the variability of the texture. Thus, a texture is repre-
sented by (a) ωλ, chosen as a square for all λ with unknown
area r, (b) ω̄, to be determined and (c) θω̄

.
= {θωλ}Λλ=1

.
=

{I(ωλ)}Λλ=1 (where I(ωλ)
.
= {I(x, y), ∀(x, y) ∈ ωλ}) that

is uniquely specified by the image given r and ωλ (Fig. 3).
Complexity controls the cardinality of ω̄. The best we

can do is to select all patches ω from Ω and store them as
ω̄. When complexity is fixed, however, for instance via a
compression parameter ξ, we can only store ξ × (X × Y )
values, rather than (X×Y ). This determines the cardinality
of ω̄. The larger r = |ωλ|, the fewer the patches that can
be stored in a given ω̄. There is a natural tradeoff where
too small an r fails to capture the local neighborhood of the
texture (Markov sufficient statistic) and too large an r fails
to capture the statistical variability, as too few patches ωλ
can be contained in a given ω̄. Both have detrimental effects
on extrapolating a texture beyond Ω, which we discuss next.

4. Inference
In this section we discuss how to infer a (minimal) rep-

resentation {ω, ω̄, θω̄} from a given texture image {Ω, I},
and how to synthesize a novel texture image Î from it. We
start from the latter since the algorithm that infers the rep-
resentation utilizes the synthesis procedure.

Algorithm 1: Texture Synthesis

1 Initialize Î(0) to a random texture;
2 Set νωs = 1 for s = 1, . . . , S and jmax = 20, b = 0.7 ;
3 for j = 1, . . . , jmax do
4 for s = 1, . . . , S do
5 ω

(j)
s = nrst nghbr(θω̄, ω̄, Î(j−1)(ω̂s));

6 Let Î(j) = arg minÎ E(Î , {ω(j)
s }Ss=1});

7 νω̂s = ‖Î(j)(ω̂s)− I(ω
(j)
s )‖b−2 for s = 1, . . . , S ;

8 if (∀ω̂s ∈ Ω̂S : Î(j)(ω̂s) = Î(j−1)(ω̂s)) then
break;

Function nrst nghbr(θω̄, ω̄, Î(ω̂))
9 Let s be the index of the the nearest neighbor of

Î(ω̂) in θω̄ ;
10 Retrieve ωs within ω̄ ;
11 return ωs ;

4.1. Image Texture Synthesis
Given a representation {ω, ω̄, θω̄}, we can synthesize

novel instances of the texture by sampling from dP (I(ω))
within ω̄. This is straightforward in a non-parametric set-
ting, where the representation is itself a collection of sam-
ples. One can simply select neighborhoods ωλ within
ω̄, and populate a new lattice with patches I(ωλ) ensur-
ing compatibility along patch boundaries and intersections.
Efros et. al. [9] proposed a causal sampling scheme that
satisfies such compatibility conditions, but fails to respect
the Markov structure of the underlying process (their I(ωλ)
are not a Markov sufficient statistic), which causes “blocky”
artifacts and “drift.” Instead, given {ω, ω̄, θω̄}, we synthe-
size textures by choosing a subset of neighborhoods from
ω̄ that satisfy the compatibility conditions and by construc-
tion also respect the Markov structure. We perform this se-
lection and simultaneously also infer Î . We do so by first
initializing Î at random. We select neighborhoods ω̂s on a
grid on the domain of the synthesized texture every

√
r

4 . We
let Ω̂S = {ω̂s}Ss=1 denote the collection of the selected ω̂s,
ΩS = {ωs}Ss=1 denote the chosen neighborhoods within ω̄
and I(ωs) ∈ θω̄ denote the nearest neighbor of Î(ω̂s). We
minimize with respect to {ωs}Ss=1 and Î the function [19]:

E(Î , {ωs}Ss=1) =
∑

ω̂s∈Ω̂S

νω̂s‖Î(ω̂s)− I(ωs)‖2. (5)

The procedure to minimize the above energy function is
given in Alg. 1. An illustration of the quantities involved
is shown in Fig. 4. νω̂s , defined in Alg. 1, is used to re-
duce the effect of outliers, as done typically in iteratively
re-weighted least squares [19]. The process is performed
in a multiscale fashion, by repeating the procedure over 3
neighborhood sizes: |ω̂s|, | ω̂s2 |, | ω̂s4 |. By first synthesizing
at scale |ω̂s| = r, we capture the Markov structure of the
texture. Subsequent repetitions refine the synthesized tex-
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Figure 5. Temporal Texture Synthesis. We forward-synthesize the
video from the texture representations of each frame using the pre-
viously synthesized frame as a boundary condition.

ture by adding finer details. We also repeat this process over
a number of different output image sizes.
4.2. Video Texture Synthesis

The texture synthesis algorithm in [19] was extended to
temporal textures, which however relied on the availability
of optical flow. Unfortunately, optical flow is expensive to
store, as encoding it is more costly than encoding the orig-
inal images. We propose a temporal texture synthesis algo-
rithm that relies on neighborhoods ωλ that extend in time.

We take the input video {It}Tt=1, and compute a com-
pact representation θω̄t , from which we synthesize {Ît}Tt=1.
In this section we assume we have θω̄t and in Sec. 4.5 we
explain how to infer it. We re-define all quantities to have
domains that extend in time. To reduce computational com-
plexity we fix the temporal extension of the neighborhoods
to 2 frames, although longer choices are possible. Hence
for t > 1, ωtλ ⊂ (1, 1, t − 1) : (X,Y, t), which makes it
a 3-D neighborhood and ω̄ becomes ω̄t .=

⋃
λ=1,...,Λ ω

t
λ, a

union of 3-D neighborhoods. It(ωtλ) is therefore defined on
the 3-D lattice and θω̄t

.
= {It(ωt1), . . . , It(ωtΛ)}. For t = 1,

ωt=1
λ , ω̄t=1 and θω̄t=1 remain 2-D.

We initialize the output video, Ît, to a random texture
and first synthesize frame Ît=1 using Alg.1. We then let
t ← t + 1 and synthesize frame t using a causal approach,
similar to [9], by ensuring that the compatibility conditions

with frame t − 1 are satisfied: For each ω̂ts ∈ Ω̂tS (where
ΩtS corresponds to the set of selected ω̂ts on the 3-D grid of
the synthesized frames, extending temporally in [t − 1, t]),
we mask (i.e., discount) the portion of the neighborhood
that is in frame t (the unsynthesized part) and seek its near-
est neighbor, ωts, within θω̄t on only the unmasked region
(i.e., on only the region that has already been synthesized).
Once we get the nearest neighbors of all ω̂ts, we fix them
and do not allow them to change. This is done in order to
achieve compatibility with the already synthesized textures.
We then unmask all neighborhoods and use them to mini-
mize the energy function in Eq. (5) (see Fig. 5).

4.3. Synthesizing Multiple Textures Simultaneously
We demonstrate how multiple textures can be synthe-

sized simultaneously for video and images without comput-
ing a segmentation map. This is useful for applications such
as video compression (where {ω, ω̄, θω̄} can be used to syn-
thesize the textures of the input video) or for image process-
ing tasks such as hole-filling and frame interpolation.

To place the textures in their corresponding locations in
a video (or image) we implicitly define their boundaries by
partitioning each frame into two types of regions: Textures
and their complementary region type, structures. Structures
are regions of images that trigger isolated responses of a
feature detector. These include blobs, corners, edges, junc-
tions and other sparse features. We determine which regions
are structures, by using a feature point tracker such as [24].

Partitioning images or video into two types of regions
has been previously proposed by several works ([13, 29, 3])
using a single image. In our framework, if a region with
a scale ε triggers an isolated response of a feature detector
(i.e., it is a structure at scale ε), then the underlying process
is, by definition, not stationary at the scale |ω̄| = ε. There-
fore, it is not a texture. It also implies that any region ω̄ of
size ε = |ω̄| is not sufficient to predict the image outside
that region. This of course does not prevent the region from
being a texture at a scale σ >> ε. Within a region σ there
may be multiple frames of size ε, spatially distributed in a
way that is stationary/Markovian. Vice-versa, if a region of
an image is a texture with σ = |ω̄|, it cannot have a unique
(isolated) extremum within ω̄. Of course, it could have mul-
tiple extrema, each isolated within a region of size ε << σ.
We conclude that, for any given scale of observation σ, a
region ω̄ with |ω̄| = σ is either a structure or a texture.

One must impose boundary conditions so that the texture
regions fill around structure regions seamlessly. To perform
texture extrapolation, we follow an approach similar to the
one used for video texture synthesis. The video is initial-
ized to a random texture. At locations where the structures
were detected and tracked, we place the actual image (in-
tensity) values. We select ω̂ts ∈ Ω̂tS like before, on a 3-D
grid of the synthesized frames, but with the added restric-
tion that ω̂ts needs to have at least one pixel in the texture



domain (otherwise it is entirely determined i.e., it is a struc-
ture). The patches that are entirely lying in the texture do-
main need to be synthesized. The patches that straddle the
texture/structure partition are used as boundary conditions
and are synthesized causally.

We mask as before the portion of each neighborhood, ω̂ts,
that is in frame t and is part of the texture domain (since this
is the only unknown, unsynthesized part of the neighbor-
hood). We then proceed as in the temporal texture synthesis
algorithm: We find the nearest neighbor of the unmasked re-
gion within θω̄t , fix it and do not allow it to change. Finally
we unmask all the neighborhoods and use them to minimize
the energy function in Eq. (5). Note that for t = 1, if ω̂ts lies
entirely in the texture domain, its nearest neighbor is per-
mitted to change through the iterations, similar to Alg.1.

Finally, in addition to the structures, we could also use ω̄t

to provide additional boundary conditions. Placing I(ωtλ)
for ωtλ ⊂ ω̄t on the image domain allows us to avoid ex-
plicitly synthesizing on these locations. These are already
stored in θω̄t , so we only need to additionally store the loca-
tion of their central pixels. Examples of synthesizing mul-
tiple textures simultaneously are shown in Fig. 13.

4.4. Texture Qualitative Criterion
To evaluate the quality of the texture synthesis algorithm,

we need a criterion that measures the similarity of the input,
I , and synthesized, Î , textures. The peak signal-to-noise
ratio (PSNR) is typically used as the criterion for evalu-
ating the quality of a reconstruction. However, when the
final user is the human visual system, PSNR is known to
be a poor criterion, especially for textures, as imperceptible
differences can cause large PSNR changes. Works such
as [28, 36, 33, 30] operate on general images and do not
exploit properties of textures. To address this issue, we
introduce the Texture Qualitative Criterion (TQC), repre-
sented byETQC , which is composed of two terms. The first
one, E1(Î , I), penalizes structural dissimilarity, whereas
E2(Î , I) penalizes statistical dissimilarity. We let ω̂s/ωi be
patches within Ω̂/Ω, the domains of Î/I , and their nearest
neighbors be ωs/ω̂i, which are selected within the domains
of I/Î . I/Î can correspond to the input/synthesized textures,
or simply two textures, which we wish to compare.

For E1(Î , I), we select NS patches ω̂s ⊂ Ω̂ and NI
patches ωi ⊂ Ω on a dense grid in the domain of the syn-
thesized and input images respectively. We let Î(ω̂s) and
I(ωi) correspond to the intensity values in the synthesized
and input neighborhoods respectively. We use the patches
selected to compute the following cost function:

E1(Î , I) =
1

2NI

NI∑

i=1

1

|ωi|
‖Î(ω̂i)− I(ωi)‖2+

1

2NS

NS∑

s=1

1

|ω̂s|
‖Î(ω̂s)− I(ωs)‖2. (6)

Figure 6. The first term in Eq. (6) identifies global range/domain
transformations of the input texture (left images). The second term
identifies erroneous texture synthesis results (right images).

Note that this expression resembles Eq. (5), with one
change: There is an added summation in Eq. (6), which is
over patches in the input image. The need of both of these
terms has also been noted by others [37] and is illustrated in
Fig. 6. The first term identifies domain/range deformations
of the input texture, whereas the second term identifies arti-
facts in the synthesized texture. We compute this cost func-
tion over multiple scales (typically 3) and average over all
scales. This makes the cost function more robust, as it is
able to compute similarity of patches at multiple scales.
E2(Î , I) is based on a distance between histograms of

filter responses, which allows us to capture the statistical
differences between two textures:

E2(Î , I) =
1

L

L∑

l=1

‖φ(gl(I))− φ(gl(Î))‖χ2 , (7)

where ‖.‖χ2 is the χ2 distance, φ(.) is a histogram of filter
response values and gl(I), l = 1, . . . , L are the responses
of the L filters. We chose the filter bank of [22] 3. Finally,
TQC is given by:

ETQC(Î , I) = E1(Î , I) + E2(Î , I). (8)

4.5. Inference of Texture Representation

Given a complexity constraint ξ, we have a bound on the
number, Λ

.
= Λ(r), of samples, ωλ, that can be stored in ω̄,

which depends on r, the scale of ωλ. To estimate r, the in-
ference algorithm involves two levels of computation. The
first level involves fixing rcand, a candidate of r, and com-
puting which samples ωλ ⊂ Ω should be stored in ω̄. This
computation is repeated for a finite number of rcand. To
choose r̂, an estimate of r, we use TQC to rank the repre-
sentations and choose the best one according to this ranking.
In this section, we describe this procedure in greater detail.

For each rcand, we use Alg.1 (see Sec. 4.1) (or its vari-
ant if the input is a video) to synthesize a novel instance
of the texture at just one scale, rcand. Upon convergence,
for each ω̂s there is an ωs (its nearest neighbor), that is as-
signed to it. The set ΩS = {ωs}Ss=1 denotes the collection
of nearest neighbors within Ω and it is the entire data that
the algorithm needs to synthesize the texture.

However, due to ξ, we need to choose which Λ ≤ S
samples from ΩS we store. To do so, we run the k-medians
algorithm [4], with an `2 distance and ΩS as the input. The
algorithm chooses the Λ cluster centers, ωλcand , from the

3The filter bank consists of 48 filters: first and second derivates of
Gaussians at 6 orientations and 3 scales, 8 Laplacian of Gaussian and 4
Gaussian filters. We used the default parameters of [22].
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Figure 7. Texture representation, θω̄ . Top: Input textures. Middle: Inferred representations. Bottom: Synthesized textures from the inferred
representation. Right pair of images: Complexity ξ determines the representational power of θω̄ . Increasing the number of stored samples,
allows the representation to capture the domain transformation.
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set ΩS that minimize the distance of all samples with their
clusters. In this sense, they are the most “representative”
samples of the underlying process. Since the cluster cen-
ters are samples from the distribution, if rcand is the true
Markov neighborhood scale, then the cluster centers ap-
proximate the variability of the texture. The cluster centers
form ω̄cand

.
=
⋃
λ=1,...,Λ ωλcand , which we can use to com-

pute θω̄cand . Using θω̄cand , we re-synthesize the textures at
multiple scales according to Sec. 4.1. We repeat this pro-
cedure for all rcand. We choose r̂ (an estimate of r) to be
the scale that minimizes TQC. This ensures that the chosen
r̂ synthesizes the most similar texture among all rcand and
hence captures best the Markov neighborhood structure. We
discretize the space of r̂ to

[
42, 82

]
∪ {k × 162}Kk=1, where

K is bounded by the scale of Ω. When Ω is unknown, we
can bound the space of r̂ to the image size, although empir-
ically it can be set to a much lower value (e.g. 128×128 for
640× 480 images). Once r̂ is selected, we retrieve the cor-
responding estimates of ω̄ and θω̄ computed at scale r̂. For
video, we repeat this process on each frame independently.

4.6. Extending the representation to multiple scales
To use the TQC, we need to assume that there is only one

texture in the image domain. This poses issues when infer-
ring the representation θω̄ and when evaluating the quality
of reconstruction for images with more than one texture. To
circumvent that, we partition the image domain into smaller
regions and infer the texture representations on each one of
these independently. We partitioned 640× 480 frames into
regions of 128×128, which in general gave us good results.

Since there is still no guarantee that there will not be
more than one texture in each of these subsets, we al-

low the texture representation to be slightly more flexi-
ble: we allow ωλ to take any of 3 different scales. Based
on the restriction imposed by ξ, we distribute the avail-
able number of samples, Λ, to samples at 3 different scales
i.e., (Λr,Λr/2,Λr/4), computed so that they satisfy the
same complexity constraint. Since multiple choices would
achieve this condition, we try all of them sequentially.

The above approach leads to forming a representation
that is multi-scale: θω̄ = {θω̄r , θω̄r/2 , θω̄r/4}, where the
subscript on ω̄ denotes the scales of the samples ωλ that be-
long to that particular ω̄. Like before, we repeat this process
for various candidates of r and choose the best one accord-
ing to TQC. Note that synthesis can still take place on the
whole image domain and it is independent of the partition-
ing done for the inference of the texture representation.

5. Experiments
Texture Representation Analysis. To qualitatively evalu-
ate the representational power of our scheme, we show in
Fig. 7 a number of examples. With the exception of the ex-
ample on the right, the algorithm picked in all others to rep-
resent the texture with just one sample, Λ = 1. r = 96× 96
for textures 1, 2, 4 and r = 112× 112 for texture 3. This is
due to two reasons: (i) by storing ωλ with large r, we can se-
lect neighborhoods at smaller scales within the stored ωλ in
texture synthesis, (ii) the textures shown with the exception
of the last one, do not exhibit significant variation to require
more than one sample to be stored. The first two exhibit lit-
tle variation. In the next two, the representation captures the
photometric variation by simply selecting (correctly) an ωλ
that exhibits this variation. The texture on the right exhibits
a domain deformation. The algorithm is unable to identify



Figure 9. Texture dataset: 10 randomly selected examples.

Figure 10. Texture Qualitative Function (TQC): Ordered synthe-
sized textures using TQC. Left: Original textures. Right: Synthe-
sized textures, left being the most similar to the input texture.

this variability with Λ = 1 and r = 96× 96 (second to last
column), but with more samples stored (rightmost column),
it is able to do so. In that case, Λ = 5 and r = 64 × 64. In
Fig. 13, we show inferred representations for video. In such
video sequences the structures provide boundary conditions
between textures and the stored samples allow localization
of the various transformations occurring on the textures.

Texture Qualitative Criterion. To evaluate TQC, we have
constructed a dataset4, made out of 61 classes of textures,
with 10 samples in each class (10 randomly selected exam-
ples of classes are shown in Fig. 9). Each sample is com-
pared against the other 609 texture images using six differ-
ent quantities: ETQC , E1, E2, PSNR, SSIM [36] and
V IF [30]. For each image we retrieve R nearest neighbors
using each of the six quantities and identify the class they
belong to. We compute confusion matrices and show the re-
sult for R = 5 in Fig. 8, where the results are accumulated
over all images. Furthermore, we plot the precision of each
of the six methods also in Fig. 8, for R = 1, . . . , 5. ETQC
performs slightly better thanE2 and significantly better than
the other methods. Note that E1 is equivalent to [37], with-
out using a control map.

To qualitatively evaluate TQC, we synthesized a number
of textures using a varying ξ and ω. We used TQC to order
the synthesized textures and we show the ordered results in

4http://vision.ucla.edu/˜giorgos/cvpr2015/

Increasing E2 Increasing E2

False 
Ordering

Correct  
Ordering

Increasing ETQC Increasing ETQC

Figure 11. Two examples where E2 fails and ETQC succeeds in
ordering the synthesized textures correctly with respect to the in-
put texture. Images with a red outline have been incorrectly or-
dered. The issue arises mainly in regular textures. The regions
within the purple ellipses are major sources of error.

Figure 12. Temporal texture synthesis. Synthesizing a novel in-
stance of a texture in a video sequence. The first frame of a 20-
frame long input video sequence is shown in the top row. 1st, 10th
and 20th synthesized frames are shown below each input image.

Seq-1 Seq-2 Seq-3 Seq-4 Seq-5 Seq-6
358(61%) 430(61%) 707(59%) 499(64%) 435(63%) 708(60%)
359(41%) 429(40%) 703(40%) 501(41%) 437(41%) 708(38%)

Seq-7 Seq-8 Seq-9 Seq-10 Seq-11 Seq-12
618(55%) 480(56%) 371(63%) 557(54%) 206(58%) 452(61%)
616(37%) 482(38%) 372(41%) 557(37%) 207(38%) 451(40%)

Table 1. Video texture synthesis evaluation. TQC for each of the
12 sequences on the texture regions (smaller is better). In brackets,
we show the corresponding compression percentage achieved.

Fig. 10. The biggest benefit of ETQC over E2 is shown
in Fig. 11. E2 fails to detect artifacts in the synthesized
textures, especially in regular ones, since the pooled statis-
tics do not reveal any inconsistencies. On the other hand,
ETQC is able to identify these cases, since samples in the
synthesized texture are artifacts of synthesis and hence are
not present in the input texture.
Texture Synthesis. To evaluate the temporal extension
of the synthesis algorithm, we decouple the representation
from the synthesis procedure by letting ξ = 1. We initialize
the output to a random video of the same length and size
as the input. We use 20 frame long video input sequences
to produce a novel instance of the texture (Fig. 12). Syn-
thesized textures capture the statistics of the inputs and are
temporally consistent.
Video Hole-Filling for Multiple Textures.

We synthesize multiple textures in the first 5 frames
of 12 videos from the MOSEG dataset[5] at two differ-
ent compression ratios using the inferred representations.
We store the intensity values in 8-bit unsigned integers and
the locations of the centers of ω in 16-bit unsigned in-

http://vision.ucla.edu/~giorgos/cvpr2015/


Figure 13. Video texture synthesis in natural images (Hole-filling). From left to right: (i) Last frame (5th) of input video, (ii) Structure
regions, (iii) Structure / Texture regions, (iv) Synthesized frame (our result), (v) Video Epitome [6] (zoom in to view details).

tegers. The space required to store the representation is
Ξ(ω̄) = Λ × r × 8 + Λ × 2 × 16. The space required
to store the texture regions without using the representa-
tion is Ξ(Ω) = 8 × |Ω|. We let the compression ratio be
ξ = Ξ(ω̄)

Ξ(Ω) . In Fig. 13, we show the last frame of the syn-
thesized videos at ξ = 40%. The results show that we can
successfully compress textures in video using our represen-
tation; during decoding, the original video can be recovered
by hole-filling. Note that we have also overlaid the detected
structures on each frame. We control the number of fea-
ture points detected and hence the structure/texture parti-
tion, by empirically adjusting the detection threshold to re-
tain in general long and stable tracks. In the same figure,
we also show the results from [6], the most relevant work
to ours, for the same target compression. We use their pub-
licly available code and we have done our best to optimize
the parameters to get the best results possible. Since their
approach does not explicitly model textures, their method
fails in synthesizing them well. For example, in the second
sequence, the sky is only barely part of the “known” region
and while our method is able to extrapolate and fill in the
rest of it by synthesis, [6] is not able to do so from their
summarization (epitome). In Table 1 we show the value of
TQC for two target compression levels used in the experi-
ments (ξ = 40% and ξ = 60%) for each of the 12 video
sequences. Examining the synthesized video sequences, it
can be observed that the spatial artifacts for both methods
are comparable (hence the values of TQC are approximately
the same), but the temporal artifacts are significantly more

for the higher compressed video, which TQC does not cap-
ture. An extension of this work would be to compute TQC
on 3D samples, rather than 2D. For additional results, please
refer to the project website4.
Future challenges. When the system is used at high com-
pression ratios, synthesizing large holes becomes challeng-
ing. Extending our coarse-to-fine approach to hole-filling
could improve the results. In addition, to infer the represen-
tations in these videos, our algorithm requires an amount
of time that is in the order of hours. Synthesis of frames
typically takes 5-10 minutes. These times are comparable
to similar methods [6, 20]. The reported time refers to a
MATLAB implementation on an Intel 2.4 GHz dual core
processor machine. In future work, we plan to find efficient
approximations to speed up inference.

6. Conclusion
A texture region exhibits a form of spatial regularity,

hence it lends itself to spatial image compression tech-
niques. We presented a new texture representation that re-
quires considerably less space to store than the input tex-
ture, while at the same time it retains many important char-
acteristics: it can still be used as input to texture classifica-
tion tasks and image and video texture synthesis. We pre-
sented a causal video compression scheme that utilizes the
proposed representation and demonstrated how this can be
used for hole-filling and texture compression in video. Fi-
nally, we proposed a new criterion to compare two textures
that measures structural and statistical dissimilarity.
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