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Abstract

One of the cornerstone principles of deep models is
their abstraction capacity, i.e. their ability to learn ab-
stract concepts from ‘simpler’ ones. Through extensive ex-
periments, we characterize the nature of the relationship
between abstract concepts (specifically objects in images)
learned by popular and high performing convolutional net-
works (conv-nets) and established mid-level representations
used in computer vision (specifically semantic visual at-
tributes). We focus on attributes due to their impact on
several applications, such as object description, retrieval
and mining, and active (and zero-shot) learning. Among the
findings we uncover, we show empirical evidence of the exis-
tence of Attribute Centric Nodes (ACNs) within a conv-net,
which is trained to recognize objects (not attributes) in im-
ages. These special conv-net nodes (1) collectively encode
information pertinent to visual attribute representation and
discrimination, (2) are unevenly and sparsely distribution
across all layers of the conv-net, and (3) play an important
role in conv-net based object recognition.

1. Introduction

The seminal work of Krizhevsky et al. [9] that trained a
large conv-net for image-level object recognition on the Im-
ageNet challenge is considered a major stepping stone for
subsequent work in conv-net based visual recognition. Such
a network is able to automatically learn a hierarchy of non-
linear features that richly describe image content as well as
discriminate between object classes. Indeed, the excellent
performance of such a network on this large-scale recogni-
tion task raises the question of whether intuitive and hand-
crafted features such as SIFT and HOG can be replaced by
conv-net features. In fact, recent work [2, 18] has shown
that features extracted from a conv-net trained on ImageNet
are general purpose (or black-box) enough to achieve state-
of-the-art results in various other recognition tasks, includ-
ing scene, fine-grained, and even action recognition. How-
ever, unlike hand-crafted features, those learned by a conv-
net are usually not visually intuitive and straightforward to
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Figure 1. Given the versatility and excellent performance of conv-
nets on various visual recognition tasks, it is plausible that mid-
level representations such as visual attributes are encoded by the
network’s activations. The location and sparsity of this encoding,
as well as, the general properties of the relationship between at-
tributes and pre-trained conv-nets are the focus of this work. (All
the figures are best viewed in color)

interpret. Despite their excellent recognition performance,
understanding and interpreting the inner workings of conv-
nets remains mostly elusive to the community. It is this
lack of deep understanding that is currently motivating re-
searchers to look under the hood and comprehend how and
why these deep networks work so well in practice.

In very recent work [1, 23], the activations of a conv-net
are put in the lime light and many interesting observations
are made. For example, using a deconv-net, these activa-
tions can be visually analyzed now and different parts of the
conv-net can be probed to measure their impact on overall
recognition. Analysing the properties of these activations
has shed light on better and more efficient strategies to pre-
train, fine-tune, and design a conv-net. Inspired by these
observations, this paper takes another step in a similar di-
rection, namely understanding how the inner workings of a
conv-net that is trained for a high-level recognition task (ob-
ject recognition) relate to intuitive and conventional mid-
level representations in computer vision literature.

Despite the insights of recent work, it is still unclear
how visual content is represented within the activations of a
conv-net. Simply put, a conv-net trained to classify objects
in images can be viewed as a deep learning machine that
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Figure 2. In this work, we empirically show that a sparse number of nodes in a conv-net, trained to recognize objects (e.g. ’dolphin’),
inherently encode information about semantic visual attributes (e.g. ’wet’). We call these activation locations Attribute Centric Nodes
(ACNs), which can be discovered by solving an `1 minimization problem (µ-LASSO).

finds the appropriate mapping between input (raw pixel in-
tensities) and output (object labels) layers. It is conceivable
to ask here whether this mapping makes use of a mid-level
representation for objects, similar in spirit to how the human
visual system functions. In fact, the empirically validated
and general purposefulness of conv-net activations across
different visual recognition tasks [18, 2] suggest that such a
shared mid-level representation of the visual world is being
automatically learned. More importantly, it is worthwhile to
investigate whether this learned mid-level representation is
related to (if at all) intuitive mid-level representations (e.g.
parts1 [4], mid-level patches [20], and visual attributes [3])
innovated by the community before conv-nets were popu-
larized. Since addressing these queries in their entirety is
beyond the scope of this paper, we focus on studying the re-
lationship between a conv-net trained to recognize objects
in images and object-level visual attributes. This can help
us realize, for example, whether a conv-net trained to rec-
ognize a ‘dog’ inherently learns what ‘fluffy’ means without
prior knowledge of the attribute.

Main Findings: In this work, we hypothesize that a
sparse number of nodes in a deep conv-net trained for
image-level object recognition on ImageNet can reliably
predict absolute visual attributes [3]. Through rigorous ex-
perimentation, we uncover the following aspects of the re-
lationship between such a conv-net and visual attributes.
(1) Visual attributes can be predicted reliably using a sparse
number of nodes from the conv-net. This suggests that the

1The relationship between conv-nets and the deformable parts model
(DPM) has been recently studied in [6].

conv-net can indirectly learn attribute concepts, even though
it is trained to recognize objects, as depicted in Figure 1.
(2) Nodes in the conv-net that are used to represent at-
tributes are called Attribute Centric Nodes (ACNs) which
are illustrated in Figure 1. The support of ACNs in the net-
work is sparse and unevenly distributed among the differ-
ent layers (convolutional and fully-connected). On aver-
age, these ACNs are concentrated in the top layers of the
network; however, their exact locations are attribute depen-
dent. Also, attributes that co-occur in images (e.g. ’furry’
and ’black’/’brown’) share ACNs.
(3) The recognition accuracy of ImageNet objects is signifi-
cantly reduced when ACNs of all attributes are ablated from
the conv-net, significantly more so, than when an equal
number of randomly sampled nodes are ablated. This sug-
gests that conv-nets actually make use of learned attribute
representations (through ACNs) to recognize objects in im-
ages. Interestingly, ablating ACNs corresponding to a spe-
cific set of attributes (e.g. ‘furry’, ‘black’, and ‘brown’) has
the most effect on object classes that are described by these
attributes (e.g. ‘retriever’ and ’gazelle’) and the least effect
on classes that are not (e.g. ‘bathtub’ and ‘chain’).

Related work

Visual Attributes: They identify mid-level concepts use-
ful for describing semantic entities like objects, scenes, ac-
tivities, etc. The seminal works of Farhadi et al. [3] and
Lampert et al. [10] show the advantages of expanding the
typical recognition problem of entities to recognizing vi-
sual attributes in images. Attributes have been shown to be
useful in describing known and unknown entities, detect-



ing atypical entities, learning models of unseen object cat-
egories from textual descriptions (zero-shot learning) and
improving the recognition performance of entities (e.g. ob-
jects and scenes) in certain scenarios [3, 22]. Unlike these
binary attributes, other work focuses on the merits of rela-
tive attributes [13], which mine pairwise relationships be-
tween attributes of different images. In this paper, we focus
on object-level binary attributes and study their relationship
with activations of a conv-net trained to recognize objects.

Understanding Conv-Nets: A conv-net is a special type
of multi-layer neural network that uses a convolutional op-
erator to combine activations from previous layers. Since
the topic of deep learning using conv-nets is rich in the lit-
erature, we refer the reader to the seminal work of [11] and a
recent survey [17] for a more detailed discussion. The most
successful conv-net architectures are trained with backprop-
agation and used recently developed regularization tech-
niques [9, 23]. Although these models have been shown
to learn a richer and more discriminative feature mapping
than hand-crafted conventional features across various vi-
sion tasks [5, 2, 8], it remains unclear what types of visual
features are learned in the pool of their hidden layers. This
lack of understanding has encouraged the community to go
beyond a ‘black-box’ view of conv-nets and seek deeper
insight into their inner workings. In this spirit, Simonyan
et al. [19] address the problem of finding images that acti-
vate specific nodes in the conv-net. This network probing
scheme is useful for visualizing and diagnosing different
parts of the conv-net’s layers. Motivated by the same goal,
recent work in [23] proposes a new scheme to visualize acti-
vations based on deconv-nets. Agrawal et al. [1] study sev-
eral properties of conv-net activations to make conv-net de-
sign and training more intuitive and accessible for the com-
munity. One interesting finding is the existence of “grand-
mother cells” for a limited set of object classes.

Inspired by previous work that focuses on visualizing
and probing a conv-net for a particular recognition task, we
focus on studying the aspects of the relationship between a
pre-trained conv-net and one popular mid-level representa-
tion (visual attributes). Specifically, we investigate the at-
tribute prediction power of this conv-net, the localized en-
coding of attributes throughout the network, and the impact
of encoded attribute concepts on object recognition. We
hope our work encourages researchers to investigate this re-
lationship for other forms of mid-level representations.

2. Approach
In this paper, we consider a conv-net that is pre-trained

to recognize objects in images. This training is done on
the ImageNet2012 challenge with 1000 object classes us-
ing a popularized conv-net architecture, whose specific de-
tails are discussed later in Section 3.1. As depicted in the
top part of Figure 2, an input image can be fed forward

through this conv-net to produce a soft-max prediction vec-
tor of the same size as the output label space (i.e. R1000

in our case). This manifestation of the conv-net comprises
5 convolutional layers denoted conv1-conv5, two fully con-
nected (multi-layer perceptrons) layers denoted fc6-fc7, and
an output layer denoted fc8. The activations of the conv-net
at each of its layers can be viewed as a nonlinear mapping
of the image into a higher-dimensional feature space. In
fact, features from layers fc6-fc8 have been used in previ-
ous work to train a discriminative model for various other
visual tasks [18].

Since this work focuses on uncovering properties that de-
scribe the relationship between the inner workings of the
conv-net and binary visual attributes, we model an input
image using all m activations in the network. In our ex-
periments, m ≈ 660K. As such, the ith image in a dataset
is represented as a high-dimensional vector xi ∈ Rm. Note
that there is a one-to-one correspondence between each of
the m elements in xi and the location of the node from
which the activation originated. Furthermore, the visual at-
tributes describing this image are organized in a binary vec-
tor l ∈ {0, 1}d, where d is the total number of attributes
under consideration. In our experiments, d = 25. Given a
set of N images {xi, li}Ni=1, we hypothesize that the jth vi-
sual attribute of an image can be predicted by a simple linear
combination wj ∈ Rm of its conv-net activations2. To pre-
vent overfitting (since N � m) and to impose possible pri-
ors on individual and groups of attributes, we use a regular-
ization function g(W), where W = [w1 · · ·wd] ∈ Rm×d.
Learning these parameters can be formulated as solving the
optimization problem in Eq (1), where f(a, b) defines a loss
function between a and b.

W∗ = argmin
W

N∑
i=1

d∑
j=1

f(wT
j xi, lij) + g(W) (1)

This conventional formulation for learning parameters is
general, since the loss function f and regularizer g can take
on various forms. To simplify the optimization at such a
large scale, we use an `2 squared loss: f(a, b) = (a − b)2
in this paper. Other losses (e.g. hinge loss) can be used
without loss of generality. As for the regularizer, we model
g(W) =

∑d
j=1 hµj (wj), where hµ(y) = 1{‖y‖1≤µ} is

the indicator function for a hard `1 constraint. We use this
regularization scheme to impose sparsity on W, since we
hypothesize that only a small number of nodes (called At-
tribute Centric Nodes or ACNs) in the conv-net are needed
to reliably predict each attribute. The threshold µj directly
controls the magnitude of this sparsity and it can be fine-
tuned through cross-validation. Other regularizers can be
used, each imposing certain priors. For example, a group
sparsity term can be added to each wj to force ACNs to ex-
ist in a small number of node groups, where a node group

2A bias term can be easily incorporated by appending 1 to each xi.
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Figure 3. Plots the AUC-ROC (and percentage of ACNs in the
conv-net) for attribute reconstruction on the ImageNet-Attribute
dataset for various values of µ. Clearly, only a small percentage of
ACNs is required to produce near perfect reconstruction. At µ =
200 (1.2% of the conv-net nodes), the AUC-ROC score stabilizes,
which is evidence that ACNs are truly sparse in the conv-net.

could be a complete layer in the conv-net or parts of it.
Also, as we will see from our experimental results, a spec-
tral regularizer e.g. a quadratic graph Laplacian term of the
form trace(WAW>), can be incorporated to mine correla-
tions between attribute parameters. Putting all these terms
together, we resort to solving Eq (2).

W∗ =argmin
W

‖X>W − L>‖2F (2)

subject to: ‖wj‖1 ≤ µj ∀j = 1, · · · , d

Here, we take X = [x1 · · ·xN ] ∈ Rm×N and L =
[l1 · · · lN ] ∈ Rd×N . Eq (2) is the matrix form for the popu-
lar µ-LASSO problem that can be efficiently solved (espe-
cially at large-scales) using the spectral gradient-projection
(SPG) method [21]. Following common practice, we pre-
normalize the rows of X to unit norm. To describe the size
of this problem, the activation matrix X in our experiments
requires more than 40GB to load into RAM memory. After
solving Eq (2), the non-zero elements (up to a small thresh-
old) of w∗j (its sparse support) localize the ACNs of attribute
j in the conv-net (refer to Figure 2). In what follows, we
perform extensive experiments to uncover the properties of
W∗, specifically in regards to its ability to predict attributes
in images, the distribution of ACNs across conv-net layers,
and the effect of ACNs on object recognition.

3. Experiments and Discussion
3.1. Experimental Setup

We conduct three different experiments in order to vali-
date whether and where information about visual attributes
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Figure 4. Compares the pairwise co-occurrence of attributes to the
correlation of ACN sparse solutions on the ImageNet-Attribute
dataset. Correlation values between sparse solutions tend to
be proportional to the co-occurrence of their corresponding at-
tributes, i.e. higher correlations tend to imply more frequent co-
occurrences and vice versa.

is inherently encoded in a conv-net trained to recognize ob-
jects and the relationship of this encoding (through ACNs)
with the task of object recognition.

Implementations details: To test our hypotheses, we need
a large-scale dataset that contains images with both object
and attribute labels. We choose the ImageNet dataset for
this purpose. A subset of ImageNet (denoted the ImageNet-
Attribute dataset [16]) comprises 9600 images labeled with
25 binary attributes.

As for the object recognition conv-net, we use the pop-
ular Alex-net architecture depicted in Figure 2. To enable
the reproducibility of our results, we use the publicly avail-
able Caffe model [7]. This network has 5 convolutional lay-
ers followed by 3 fully-connected layers. Using a short-
hand notation the full architecture is C(96, 11, 4) − N −
P −C(256, 5, 1)−N −P −C(384, 3, 1)−C(384, 3, 1)−
C(256, 3, 1)− P − FC(4096)− FC(4096)− FC(1000)
where C(d, f, s) indicates a layer with d filters of d × d
size applied with a stride s. FC(n) is a fully-connected
layer with n nodes. All pooling layers P use a kernel of
3 × 3 with a stride of 2 pixels and all normalization layers
N are defined according to [9]. Except for the last fully-
connected layer, all convolutional and fully-connected lay-
ers use the rectified linear unit (ReLu) as the non-linear acti-
vation function. Each image is rescaled to 256×256 pixels,
from which multi-scaled crops of 227×227 pixels are taken.
Then, we normalize each image to zero mean. More details
of this network are included in the supplementary mate-
rial. This conv-net is trained on the ILSVRC-12 dataset,
which is a subset of ImageNet comprising 1.2 million im-
ages and 1000 object classes [15]. Then, we feed the im-
ages from the ImageNet-Attribute and ILSVRC-12 datasets
through the trained conv-net, while retaining all the activa-
tions (after ReLu) of all the convolutional and fully con-
nected layers in the network (m ≈ 660K).

Solving Eq (2) using SPG on a 3GHz 96GB RAM work-
station running MATLAB takes 45 mins (on average) to
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Figure 5. Shows contributions of each conv-net layer to attribute reconstruction. (left) For each attribute, we plot the normalized percentage
of ACNs in each layer, scaled inversely proportional to its number of nodes. The average percentage of each layer across all attributes is
in parentheses in the legend. (right) For each attribute, we plot the normalized `1 magnitude of each layer, scaled inversely proportional to
its number of nodes. On average, the top layers of the conv-net tend to contribute more than the bottom ones.

converge using a reasonable stopping criterion. Of course,
the larger µ is, the longer the runtime.

3.2. Does a conv-net indirectly learn attributes?

Attribute Reconstruction: We are interested in testing our
hypothesis on the existence of a sparse number of ACNs
that encode semantic attribute information. To do this, we
solve Eq (2) using all the activations of the pre-trained conv-
net for all the images in the ImageNet-Attribute dataset
(with µj = µ ∀j), across a range of µ values. In this
case, N = 9600, d = 25, and m ≈ 660K. To measure
how well the attributes are being reconstructed (i.e. how
well ACNs encode attribute information), we compute the
average area under the ROC curve (AUC-ROC) of all 25
attributes, for each value of µ. We report these results in
Figure 3, which also plots the average percentage of ACNs
selected within the conv-net. It is obvious that only a small
percentage of the nodes in the conv-net (ACNs) is required
to reliably encode attributes, at a high AUC-ROC value. In-
terestingly, even at µ = 10 (i.e. using 3K nodes out of the
total 660K), the AUC-ROC is still quite high at 51% (for all
25 attributes). A relatively small increase in µ (i.e. in the
number of ACNs) quickly saturates the AUC-ROC score.
These results provide evidence that a conv-net trained to
recognize objects can indirectly learn a mid-level represen-
tation (visual attributes in this case).

Attribute Co-Occurrence: A single image can be de-
scribed by more than one attribute. A pair of attributes
are said to co-occur in an image if they both manifest in

it. We compute the frequency of co-occurrence between
all pairs of attributes on the ImageNet-Attribute dataset in
the form of a normalized co-occurrence matrix (see Fig-
ure 4 (right)). For comparison, we also compute the cor-
relation matrix G = W∗>W∗, which measures the lin-
ear correlation between pairs (w∗i ,w

∗
j ) of sparse solutions

from Eq (2) using µ = 500 (see Figure 4 (left)). We ob-
serve two interesting properties. (a) The results show that
attributes that frequently co-occur have similar ACN sup-
ports (since their sparse solutions have relatively high cor-
relations), while those that do not co-occur much tend to
have disjoint supports. For example, ‘furry’ co-occurs with
‘black’ & ‘brown’ and their corresponding sparse solutions
have a consistently high correlation. The opposite relation-
ship arises with ‘vegetation’ and ‘violet’ for example. One
might argue that the very high-dimensionality of each w∗i is
the reason why such low correlations exist for most of the
attribute solutions. However, even based on this argument,
the presence of high correlation values that coincide with
high co-occurrence values cannot be coincidental. (b) This
finding hints at the possibility that the conv-net not only
encodes attribute information, but it does so efficiently by
encoding groups of co-occuring attributes together. Here,
we note that this pairwise relationship arises even though
the regularizer in Eq (2) does not enforce it. This motivates
the use of other regularizer forms for g(.) in Eq (2), which
can embed structural priors, such as co-occurrence.

ACN Localization: After showing that a sparse number of
ACNs exist in the conv-net, we aim to localize the layers in
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Figure 6. Visualizes the portions of the sparse ACN solution of Eq (2) across the different filters of each convolutional layer and each
attribute. We use µ = 400 here. Only the top-10 portions (in terms of `1 norm) of each layer are shown. Interestingly, ACNs in lower
convolutional layers tend to be spatially structure-less, while they become more centralized and spatially contiguous in higher layers.

which they occur. To do this, we compute the normalized
contribution of each layer to the overall sparse solution of
each attribute. To distinguish the existence of an ACN from
its ‘magnitude’ or importance (for each attribute), we de-
fine two measures for each layer: (i) the number of ACNs
in the layer, and (ii) the `1 norm of the part of the sparse so-
lution it corresponds to. Since the number of nodes varies
across layers, we weigh both measures with a value that is
inversely proportional to the total number of nodes in the
layer. Then, for each attribute, we normalize the weighted
measures of all layers to sum to one. Both normalized mea-
sures are shown in Figure 5 for all 25 attributes. In general,
we find that more than 60% of the ACN count and mag-
nitude contribute to the top 3 layers of the conv-net. This
validates the results of some previous works [2, 18] that
use activations from these top layers in different recognition
tasks, including attribute detection. However, it is important
to mention that the lower convolutional layers also play an
important role in representing attributes, especially colors
such as ‘blue’ or ‘orange’. Interestingly, ACNs of texture
attributes such as ‘furry’, ‘metallic’, and ‘wooden’ tend to
be found in the higher layers.
ACN Visualization in Conv Layers: Since the activations
of the convolutional layers encode spatial information di-
rectly, we visualize the absolute value of portions of the
sparse solution (of each attribute) corresponding to the dif-
ferent filters in these layers. In each layer, we reshape these
portions into 2D images of the same size as the filter ac-
tivations and rank them in descending order according to
their `1 norm. Figure 6 shows the top-10 filter portions per

convolutional layer for each attribute. The sparsity of our
solution (cold colors) and the distribution of the ACNs (hot
colors) is evident. We find that the results in the lower lay-
ers (conv1 and sometimes conv2) are fragmented and have
no clear structure, in general. Also, they tend to be more lo-
calized and spatially contiguous farther up in the network.
However, this property is attribute specific. For example, at-
tributes like ‘black’ and ‘green’, have interesting structures
(spatially centralized and large magnitude) in the lower lay-
ers. This indicates that these attributes tend to be consis-
tently spatially localized in images with ‘black’ and ‘green’
labels.

3.3. Can ACN activations predict attributes?
Previously, we showed that a sparse number of ACNs do

preside in the conv-net in an unevenly distributed fashion.
Now, we focus on studying the generalization performance
of these ACNs in predicting visual attributes in unseen im-
ages. This task of attribute detection/recognition has been
addressed in previous work [2, 5, 18], which use conv-net
activations in the top-3 layers only. In this experiment, we
show that activations at ACNs are not only reliably discrim-
inative of attributes but that their discriminative power im-
proves when all conv-net layers are considered.

To do this, we follow the same evaluation protocol
suggested by Russakovsky et al. [16] on the ImageNet-
Attribute dataset. We perform 5-fold cross-validation,
where for each split of the data 3 folds are for training, 1
for validation (tuning µj for each attribute), and 1 for test-
ing. We run 15 independent splits in this manner and report
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Figure 7. Shows attribute prediction performance measured in
terms of the mean area under ROC curve. Attributes are grouped
into ‘color’, ‘pattern’,‘texture’, and ‘shape’ as suggested in [16].
The average performance of each group for the 20 attributes used
by [16] is reported in parentheses.

Table 1. Summary of attribute recognition results on the
ImageNet-Attribute dataset. We report the average area under the
ROC curve for two setups: (top) 20 attributes (organized into 4
groups) as in [16] and (bottom) all 25 attributes (also in 4 groups).
These results confirm the discriminative power and versatility of
ACN activations for attribute recognition/prediction.

Attribute Group [16] Our
Color (8 attr) 87.5% 91.6%

Texture (7 attr) 77.5% 86.7%
Pattern (2 attr) 63.4% 86.7%
Shape (3 attr) 83.6% 88.7%

Overall (20 attr) 80.8% 89.0%
Attribute Group Our SVM FC-6 SVM FC-7 SVM FC-8

Color (11 attr) 90.5% 88.1% 89.6% 87.5%
Texture (8 attr) 87.7% 84.3% 83.9% 85.5%
Pattern (2 attr) 86.7% 87.6% 86.9% 85.9%
Shape (4 attr) 88.8% 90.4% 90.9% 89.0%

Overall (25 attr) 89.0% 87.2% 87.7% 86.9%

the mean area under the ROC curve for all splits. Figure 7
summarizes our results. Clearly, the proposed sparse repre-
sentation of ACN activations generalizes well for attribute
recognition. In Table 1, we compare our performance with
the work in [16], which uses a non-linear SVM with mul-
tiple hand-crafted features (color, SIFT and shape context)
to predict only 20 of the 25 attributes. Similar to [16], we
organize the attributes into four attribute groups to simplify
visualization. We record an average improvement of 9.8%
across all 20 attributes. We also compare our results on
the 25 attribute case with that of a linear SVM trained only
on activations of the top 3-layers of the conv-net. We con-
clude that activations in the convolutional layers help im-
prove recognition performance slightly (1.3− 2.1%).
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Figure 8. Plots top-5 accuracy on the ILSVRC-2012 validation set
of the original Alexnet model (green) and its two surgically dam-
aged variants. One variant (red) ablates the ACNs of all 25 at-
tributes (at each µ value), while the other (blue) ablates an equal
number of randomly sampled nodes. Both variants show a steep
drop-off as µ increases; however, the difference in accuracy be-
tween the two is significant. This suggests that ACNs encode im-
portant information used by the conv-net for recognition.

3.4. How relevant are ACNs to object recognition?

Farhadi et al. [3] show that object recognition using se-
mantic attributes as features is less effective than using
hand-crafted features [3]. To evaluate the generality of
this result, we study the impact of ACN activations on the
task of object recognition in this experiment. To do this,
we measure the recognition performance of the pre-trained
conv-net before and after ACNs are ablated (i.e. their out-
puts are manually set to 0). We call this operation ‘conv-
net surgery’, which is similar in spirit but different in pur-
pose to the brain damage strategy proposed by LeCun et al.
[12], which investigates an efficient way to prune a conv-net
without significant performance degradation. In this paper,
conv-net surgery is used to probe the relevance of ACN acti-
vations in recognizing objects in images. Conceivably, one
can perform the reverse operation (i.e. ablate all nodes ex-
cept for ACNs). However, in this case, the sparsity of ACNs
will deactivate the majority of the conv-net and dramatically
degrade performance without much meaningful insight.
Quantitative Results: In Figure 8, we report the results of
conv-net surgery for various levels of sparsity (controlled
by µ) on the validation set of ILSVRC-2012. Clearly, ablat-
ing any nodes from the conv-net might decrease accuracy.
So, to measure the significance of ACN activations, we re-
quire a baseline to compare against. To this end, we perform
surgery for two scenarios: (i) ablate/inhibit ACNs and (ii)
ablate/inhibit uniformly random sampled nodes from the
conv-net based on the number of selected ACNs on each
layer (baseline). Here, ACNs are aggregated from all 25 at-
tributes using an OR operation on their sparse supports. The
results of ablating ACNs of individual attributes separately



are shown in the supplementary material. Intuitively, the
difference in performance between the two schemes should
shed light on the inherent relevance of ACNs to object
recognition. From the results of Figure 8, it is clear that
a slight increase in µ (i.e. increase in the number of ACNs)
can lead to a dramatic drop-off in the top-5 accuracy. This
drop-off is less severe for the randomized baseline scheme,
whose accuracy is averaged over 10 independent runs (stan-
dard deviation is also shown), for every value of µ. In some
cases, the difference between the two schemes reaches more
than 20%. The statistical significance of these differences
has been verified numerically using a p-test. For sparsity
levels beyond µ=100 (i.e. about 20% of the total number
of nodes and more than 80% of the nodes in fc6 and fc7),
too many nodes are ablated and discrimination is no longer
possible. In summary, these results suggest that ACNs do
play an important role (not necessarily by themselves) in
recognizing objects and that the conv-net does mine rela-
tions between attributes and objects for recognition.
Qualitative Results: Apart from the effect of ACN ablation
on object recognition performance, we investigate the exis-
tence of semantic relationships between ablated ACNs of
specific attributes and the most (and least) affected object
classes. In this case, we perform conv-net surgery using
subsets of the 25 attributes and rank the object classes ac-
cording to their accuracy degradation. Figure 9 shows three
such attribute groups and the top-5 most and least affected
classes. Interestingly, the most affected classes tend to pos-
sess the ablated attributes, while the least affected do not.

4. Conclusion and Future Work
This work shows that there is an intricate relationship be-

tween semantic visual attributes and a conv-net trained for
object recognition. We empirically show the existence of at-
tribute centric nodes (ACNs) in this conv-net. These nodes
encode information that precisely reconstructs attributes in
a sparse and unevenly distributed manner among the conv-
net layers. We show that ACNs are generalizable and pre-
dict attributes better than hand-crafted visual features. We
also demonstrate that ACNs are quite important within the
conv-net for object recognition. The existence and versatil-
ity of ACNs is a stepping stone for developing new algo-
rithms that exploit mid-level concepts in conv-nets.

For future work, we aim to extend our analysis to scene
recognition. Using large datasets of attributes and scenes
[14, 24], we can extend the applicability of our work, as
well as, incorporate other forms of regularization to encour-
age other priors such as shared activations or correlations
between attributes.
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Figure 9. Shows object classes that are the most (red box) and least
(green box) affected by ablating ACNs corresponding to three ex-
ample attribute groups. The mean average precision degradation
of each of these classes is reported below its representative image.
The most affected classes tend to contain the ablated attributes,
while the least affected ones do not. In some cases, the accu-
racy degradation is tremendous, reaching more than 60%. This
is another example of the intricate relationship between ACNs on
conv-net and semantic attributes.
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