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Abstract

The popularity of low-cost RGB-D scanners is increas-
ing on a daily basis. Nevertheless, existing scanners of-
ten cannot capture subtle details in the environment. We
present a novel method to enhance the depth map by fus-
ing the intensity and depth information to create more de-
tailed range profiles. The lighting model we use can han-
dle natural scene illumination. It is integrated in a shape
from shading like technique to improve the visual fidelity of
the reconstructed object. Unlike previous efforts in this do-
main, the detailed geometry is calculated directly, without
the need to explicitly find and integrate surface normals.
In addition, the proposed method operates four orders of
magnitude faster than the state of the art. Qualitative and
quantitative visual and statistical evidence support the im-
provement in the depth obtained by the suggested method.

1. Introduction
The availability of affordable depth scanners has sparked

a revolution in many applications of computer vision, such
as robotics, human motion capture, and scene modeling and
analysis. The increased availability of such scanners natu-
rally raises the question of whether it is possible to exploit
the associated intensity image to improve their lack of ac-
curacy. To obtain fine details such as facial features, one
must compensate for the measurement errors inherent in the
depth scanners.

Our goal is to fuse the captured data from the RGB-D
scanner in order to enhance the accuracy of the acquired
depth maps. For this purpose, we must accurately align and
combine both depth and scene color or intensity cues. As-
suming that the scanner is stationary and its calibration pa-
rameters are known, aligning the intensity and depth data is
a relatively straightforward task. Recently, scanners that al-
low access to both infra-red scene illumination and depth
maps, have become available enabling the possibility of

even richer RGB-D-I fusion.
Reconstructing a shape from color or intensity images,

known as shape from shading [16, 5, 22], is a well re-
searched area in computer vision. These shape estimation
problems usually suffer from ambiguities since there can
be several possible surfaces that can explain a given image.
Recently, attempts have been made to eliminate some of
these ambiguities by using more elaborated lighting mod-
els, and richer, natural illumination environments [19, 20].
Moreover, it was observed that data from depth sensors
combined with shape from shading methods can be used
to eliminate ambiguities and improve the depth maps [42,
41, 15].

We introduce a novel real-time method to directly en-
hance surface recovery that achieves state of the art accu-
racy. We apply a lighting model that uses normals estimated
from the depth profile, and eliminates the need for calibra-
tion of the scene lighting. The lighting model accounts for
light sources, multiple albedos, and local lighting effects
such as specularities, shadows and interreflections.

Assuming that the lighting model explains the smooth
nature of the intensity image, and that high frequency data
in the image is related to the surface geometry, we recon-
struct a high quality surface without first finding and inte-
grating its normals. Instead, we use the relation between
the surface gradient, its normals, and a smoothed version of
the input depth map to define a surface dependent cost func-
tional. In order to achieve fast convergence, we relinearize
the variational problem.

The main contributions of this paper are:

1. Presenting a novel robust depth enhancement method
that operates under natural illumination and handles
multiple albedo objects.

2. Showing that depth accuracy can be enhanced in real-
time by efficiently fusing the RGB-D inputs.

3. Showing that improved depth maps can be acquired di-
rectly using shape from shading technique that avoids
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the need to first find the surface normals and then inte-
grate them.

The paper outline is as follows: we overview previous ef-
forts in Section 2. The proposed algorithm is presented in
Section 3. Results are shown in Section 4, with disscusions
in Section 5.

2. Related Work

Here, we briefly review some of the research done in
depth enhancement and shape from shading. We refer to
just a few representative papers that capture the major de-
velopment and the state of the art in these fields.

2.1. Depth Enhancement

Depth enhancement algorithms mostly rely on one of the
following strategies: using multiple depth maps, employing
pre-learned depth priors and combining depth and intensity
maps.

Multiple depth maps. Chen, and Medioni laid the foun-
dation to this paradigm in [7] by registering overlapping
depth maps to create an accurate and complete 3D mod-
els of objects. Digne et al. [10] decomposed laser scans to
low and high frequency components using the intrinsic heat
equation. They fuse together the low frequency components
of the scans and keep the high frequency data untouched to
produce a higher resolution model of an object. Merrel et
al. [30] generated depth images from intensity videos which
were later fused to create a high resolution 3D model of
objects. Schuon, et al. [36] aligned multiple slightly trans-
lated depth maps to enhance depth resolution. They later
extended this in [8] to shape reconstruction from global
alignment of several super-resolved depth maps. Tong, et
al. [38] used a non-rigid registration technique to combine
depth videos from three Kinects to produce a high resolu-
tion scan of a human body. Probably the most popular effort
in this area is the KinectFusion algorithm [32], in which a
real time depth stream is fused on the GPU into a truncated
signed distance function to accurately describe a 3D model
of a scanned volume.

Pre-learned depth priors. Oisin et al. [28] use a dic-
tionary of synthetic depth patches to build a high resolu-
tion depth map. Hornáček et al. [18] extended to 3D both
the self similarity method introduced in [37] and the Patch-
Match algorithm by Barnes et al. [1] and showed how they
can be coupled to increase spatial and depth resolution. Li,
et al. [25] extract features from a training set of high res-
olution color image and low resolution depth map patches,
then, they learn a mapping function between the color and
low resolution depth patches to the high resolution depth
patches. Finally, depth resolution is enhanced by a sparse
coding algorithm. In the context of 3D scanning, Rosman

et al. [35] demonstrated the use of a sparse dictionary for
range images for 3D structured-light reconstruction.

Depth and intensity maps. The basic assumption be-
hind these methods is that depth discontinuities are strongly
related to intensity discontinuities. In [26, 40] a joint bi-
lateral upsampling of intensity images was used to enhance
the depth resolution. Park et al. [33] combined a non-local
means regularization term with an edge weighting neigh-
borhood smoothness term and a data fidelity term to de-
fine an energy function whose minimization recovers a high
quality depth map. In a more recent paper, Lee and Lee [24]
used an optical flow like algorithm to simultaneously in-
crease the resolution of both intensity and depth images.
This was achieved using a single depth image and multiple
intensity images from a video camera. Lu et al. [27] assem-
ble similar RGBD patches into a matrix and use its low-rank
estimation to enhance the depth map.

2.2. Shape from Shading

Shape from shading. The shape from shading problem
under the assumption of a Lambertian surface and uniform
illumination was first introduced by Horn in [16]. The sur-
face is recovered using the characteristic strip expansion
method. In 1986, Horn and Brooks [17] explored varia-
tional approaches for solving the shape from shading prob-
lem. Later, Bruckstein [5] developed a direct method of
recovering the surface by level sets evolution assuming that
the light source is directly above the surface. This method
was later generalized by Kimmel and Bruckstein [21] to
handle general cases of uniform lighting from any direc-
tion. In [22], Kimmel and Sethian show that a fast solution
to the shape from shading problem can be obtained from a
modification to the fast marching algorithm. The work of
Mecca et al. [29] has recently shown a PDE formulation for
direct surface reconstruction using photometric stereo. Two
surveys in [43, 11] comprehensively cover the shape from
shading problem as studied over the last few decades.

Recently, attempts were made to solve the shape from
shading problem under uncalibrated natural illumination.
Forsyth [12] modeled the shading by using a spatially slow
varying light source to reconstruct the surface. Huang and
Smith [19] use first order spherical harmonics to approx-
imate the surface reflectance map. The shape is then re-
covered by using an edge preserving smoothing constraint
and by minimizing the local brightness error. Johnson and
Adelson [20] modeled the shading as a quadratic function of
the surface normals. They showed, counter-intuitively, that
natural illumination reduces the surface normals ambiguity
and thus making the shape from shading problem simpler to
solve.

Bohme et al. [4] imposed a shading constraint on a
probalistic image formation model to find a MAP estimate
of an enhanced range map. In their paper, Han et al. [14]



showed that shape from shading can be used in order to
improve the quality of a shape obtained from a depth map
under natural illumination. The initial surface normals ob-
tained from a Kinect depth map are refined and then fused
with depth information using a fusion algorithm from Ne-
hab et al. [31]. Yu et al. [41] recover albedos and lighting
of segmented intensity image and combine them to recover
an accurate depth map using shape from shading. Zhang
et al. [42] fuse depth maps and color images captured under
different illumination conditions and use photometric stereo
to improve the shape quality. Haque et al. [15] used a pho-
tometric stereo approach to reconstruct the shape normals
from a given depth map and then integrate the normals to
recover the object. They also suggested a method to fuse
multiple reconstructions. Wu et al. [39] used spherical har-
monics to recover the scene shading from normals obtained
from a consumer depth scanners. The shape is then refined
in real-time by finding the surface that minimizes the differ-
ence between the shading and intensity image gradients.

3. Shape Refinement Framework
We now propose a framework for depth refinement. The

input is a depth map and a corresponding intensity image.
We assume that the input depth and intensity images were
taken from a calibrated fixed system. The intrinsic matrices
and the extrinsic parameters of the depth and color sensors
are assumed to be known.

We first wish to obtain a rough version of the input sur-
face. However, due to measurement inaccuracies, the given
depth profile is fairly noisy. For a smooth estimate, we ap-
ply a bilateral filter on the input depth map.

Next, we estimate initial surface normals corresponding
to the smoothed surface. A lighting model can now be eval-
uated. We start by recovering the shading from the initial
normals and the intensity. The subsequent step accounts for
different albedos and shadows. Finally, the last step esti-
mates varying illumination that better explains local light-
ing effects which only affect portions of the image. Once
the lighting model is determined, we move on to enhance
the surface. Like modern shape from shading methods, we
take advantage of the fact that an initial depth map is given.
With a depth map input, a high quality surface can be di-
rectly reconstructed without first refining the estimated nor-
mals. This is done by a variational process designed to min-
imize a depth based cost functional. Finally, we show how
to speed up the reconstruction process.

3.1. Lighting Estimation

The shading function relates a surface geometry to its
intensity image. The image is taken under natural illumi-
nation where there is no single point light source. Thus,
the correct scene lighting cannot be recovered with a Lam-
bertian model. A more complex lighting model is needed.

Grosse et al. [13] introduced an extended intrinsic image
decomposition model that has been widely used for recov-
ering intrinsic images. We show how we can efficiently in-
corporate this model for our problem in order to get state of
the art surface reconstruction. Define,

L(i, j, ~n) = ρ(i, j)S(~n) + β(i, j), (1)

where L(i, j, ~n) is the image lighting at each pixel, S(~n)
is the shading, ρ(i, j) accounts for multiple scene albedos
and shadowed areas since it adjusts the shading intensity.
β(i, j) is added as an independent, spatially changing, near
light source, that accounts for local lighting variations such
as interreflections and specularities. We note that the (i, j)
indexing is sometimes omitted for convenience throughout
the paper.

Clearly, since we only have a single input image, without
any prior knowledge, recovering S, ρ and β for each pixel is
an ill-posed problem. However, the given depth map helps
us recover all three components for each pixel.

3.1.1 Shading Computation

First, we assume a Lambertian scene and recover the shad-
ing S, associated with light sources that have a uniform
effect on the image. Once the shading is computed, we
move on to find ρ and β, to better explain the intensity im-
age given the object geometry. During the shading recovery
process, we set ρ to 1 and β to 0.

Basri and Jacobs [3] and Ramamoorthi and Hanra-
han [34] found that the irradiance of diffuse objects in nat-
ural illumination scenes can be well described by the low
order spherical harmonics components. Thus, a smooth
function is sufficient to recover the shading image. For the
sake of simple and efficient modelling, we opt to use zero
and first order spherical harmonics, which are a linear poly-
nomial of the surface normals and are independent on the
pixel’s location. Therefore, they are given by

S(~n) = ~mT ñ, (2)

where ~n is the surface normal, S(~n) is the shading function,
~m is a vector of the four first order spherical harmonics co-
efficients, and ñ = (~n, 1)T .

Every valid pixel in the aligned intensity image I can be
used to recover the shading. Hence, we have an overdeter-
mined least squares parameter estimation problem

argmin
~m

‖~mT ñ− I‖22. (3)

The rough normals we obtained from the initial depth map
eliminate the need for assumptions and constraints on the
shape or using several images. This produces a straightfor-
ward parameter fitting problem unlike the classical shape
from shading and photometric stereo approaches. Despite



having only the normals of the smoothed surface we can
still obtain an accurate shading model since the least square
process is not sensitive to high frequency changes and sub-
tle shape details. In addition, the estimated surface normals
eliminate the need for pre-calibrating the system lighting
and we can handle dynamic lighting environments.

Background normals obviously affect the shading model
outcome since they are related to different materials
with different albedos, hence, their irradiance is different.
Nonetheless, unlike similar methods, our method is robust
to such outliers as our lighting model and surface refinement
scheme were designed to handle that case.

3.1.2 Multiple Albedo Recovery

The shading alone gives us only a rough assessment of
the lighting, as it explains mostly distant and ambient light
sources and only holds for diffuse surfaces with uniform
albedo. Specularities, shadows and nearby light sources re-
main unaccounted for. In addition, multiple scene albedos,
unbalanced lighting or shadowed areas affect the shading
model by biasing its parameters. An additional cause for
the errors is the rough geometry used to recover the shading
model in (2). In order to handle these problems, ρ and β
should be computed.

Finding ρ and β is essential to enhance the surface ge-
ometry, without them, lighting variations will be incorrectly
compensated for by adjusting the shape structure. Since we
now have the shading S, we can move on to recover ρ.

Now, we freeze S to the shading image we just found
and optimize ρ to distinguish between the scene albedos
and account for shadows (β is still set to 0). We set a fi-
delity term to minimize the `2 error between the proposed
model and the input image. However, without regulariza-
tion, ρ(i, j) is prone to overfitting since one can simply set
ρ = I/S and get an exact explanation for the image pix-
els. To avoid overfitting, a prior term that prevents ρ from
changing rapidly is used. Thereby, the model explains only
lighting changes and not geometry changes. We follow the
retinex theory [23] and like other intrinsic images recov-
ery algorithms, we assume that the albedo map is piecewise
smooth and that there is a low number of albedos in the
image. Unlike many intrinsic image recovery frameworks
like [2, 6], who use a Gaussian mixture model for albedo re-
covery we use a weighted Laplacian to distinguish between
materials and albedos on the scene while maintaining the
smooth changing nature of light. This penalty term is de-
fined as ∥∥∥∥∥∑

k∈N

ωckω
d
k(ρ− ρk)

∥∥∥∥∥
2

2

, (4)

whereN is the neighborhood of the pixel. ωck is an intensity

weighting term suggested in Equation (6) in [14],

ωck =


0, ‖Ik − I‖22 > τ

exp

(
−‖Ik − I(i, j)‖22

2σ2
c

)
, otherwise,

(5)
and ωdk is the following depth weighting term

ωdk = exp

(
−‖zk − z(i, j)‖

2
2

2σ2
d

)
. (6)

Here, σd is a parameter responsible for the allowed depth
discontinuity and z(i, j) represents the depth value of the
respected pixel. This regularization term basically performs
a three dimensional segmentation of the scene, dividing it
into piecewise smooth parts. Therefore, material and albedo
changes are accounted for but subtle changes in the surface
are smoothed. To summarize, we have the following regu-
larized linear least squares problem with respect to ρ

min
ρ
‖ρS(~n)− I‖22 + λρ‖

∑
k∈N

ωckω
d
k(ρ− ρk)‖22. (7)

3.1.3 Lighting Variations Recovery

Finaly, after ρ(i, j) is found we move on to find β(i, j). A
similar functional to the one used for ρ(i, j) can also be used
to recover β(i, j), since specularities still maintain smooth
variations. Despite that, we need to keep in mind the ob-
servation of [3, 34], first order spherical harmonics account
for 87.5% of the scene lighting. Hence, we also limit the
energy of β(i, j) in order to be consistent with the shading
model. Therefore, β(i, j) is found by solving

min
β
‖β−(I−ρS(~n))‖22+λ1β‖

∑
k∈N

ωckω
d
k(β−βk)‖22+λ2β‖β‖22.

(8)

3.2. Refining the Surface

At this point our complete lighting model is set to explain
the scene’s lighting. Now, in order to complete the recovery
process, fine geometry details need to be restored. A typical
SFS method would now adjust the surface normals, trying
to minimize

‖L(i, j, ~n)− I‖22 (9)

along with some regularization terms or constraints. The
resulting cost function will usually be minimized in the (p−
q) gradient space.

However, according to [12], in order to minimize (9)
schemes that use the (p − q) gradient space can yield sur-
faces that tilt away from the viewing direction. Moreover,
an error in the lighting model which can be caused by nor-
mal outliers such as background normals would aggravate
this artifact. Therefore, to avoid this phenomena, we take



further advantage of the given depth map. We write the
problem as a functional of z, and force the surface to change
only in the viewing direction, limiting the surface distor-
tion and increasing the robustness of the method to lighting
model errors.

We use the geometric relation between surface normals
and the surface gradient given by

~n =
(zx, zy,−1)√

1 + ‖∇z‖2
, (10)

where

zx =
dz

dx
, zy =

dz

dy
, (11)

to directly enhance the depth map. The surface gradient,
represented as a function of z, connects between the inten-
sity image and the lighting model. Therefore, by fixing the
lighting model parameters and allowing the surface gradient
to vary, subtle details in the surface geometry can be recov-
ered by minimizing the difference between the measured
intensity image and our shading model,

‖L(∇z)− I‖22. (12)

Formulating the shape from shading term as function of z
simplifies the numerical scheme and reduces ambiguities.
Since we already have the rough surface geometry, only
simple fidelity and smoothness terms are needed to regular-
ize the shading. Therefore, our objective function for sur-
face refinement is

f(z) = ‖L(∇z)− I‖22 + λ1z‖z − z0‖22 + λ2z‖∆z‖22, (13)

Where z0 is the initial depth map and ∆ represents the
Laplacian of the surface. Using a depth based numerical
scheme instead of (p−q) gradient space scheme, makes our
algorithm less sensitive to noise and more robust to lighting
model errors caused by normal outliers. This has a great im-
plication in handling real-world scenarios where the desired
shape cannot be easily distinguished from its background.

The functional introduced is non-linear due to the shad-
ing term since the dependency between the surface normals
and it’s gradient requires geometric normalization. A so-
lution to (13) can be found using the Levenberg-Marquadt
algorithm or various Trust-Region methods, however, their
convergence is slow and not suitable for real-time applica-
tions.

In order to accelerate the performance of the algorithm,
we reformulate the problem in a similar way to IRLS op-
timization scheme. We do so by freezing non-linear terms
inside the shading model. This allows us to solve a linear
system at each iteration, and update the non-linear terms at
the end of each iteration. First, we recall Equation (10) and

Algorithm 1: Accelerated Surface Enhancement
Input: z0, ~m, ρ, β - initial surface, lighting parameters

1 while f(zk−1)− f(zk) > 0 do
2 Update ñk = (~nk, 1)T

3 Update L(∇zk) = ρ(~mT ñk) + β

4 Update zk to be the minimizer of f(zk)

5 end

Figure 1: Thai Statue error analysis. From left to right: Input
color image. Error image of the raw depth map. Error image of
the final result. Note how the algorithm reduces the initial surface
errors.

eliminate the denumerator using the auxiliary variables

~nk = wk(zkx, z
k
y ,−1)T , (14)

wk = (1 + ‖∇zk−1‖2)−
1
2

The new lighting linearized model reads

L(i, j,∇z) = ρ(i, j) · (~mT ñk) + β(i, j). (15)

This results an updated shading term. Now, at each iteration
we need to solve the following functional for zk,

f(zk) =‖ρ(~mT ñk)− (I − β)‖22
+ λ1z‖zk − z0‖22 + λ2z‖∆zk‖22.

(16)

This process is repeated as long as the objective function
f(z) decreases. A detailed explanation of the update rule
can be found in Algorithm 1.

4. Results
In order to test the proposed algorithm we performed a

series of experiments to validate its efficiency and accuracy.
We show that our results are quantitatively and visually state
of the art, using both synthetic and real data. In addition, we
display the ability of our algorithm to avoid texture copy
artifacts, handle multiple albedo objects, demonstrate the
robustness of our algorithm to background normals outliers,
and present a runtime profile of the proposed method.



Median 90th %
Initial Han et al. Wu et al. Proposed Initial Han et al. Wu et al. Proposed

Thai Statue 1.014 0.506 0.341 0.291 2.463 2.298 1.831 1.585
Lincoln 1.012 0.386 0.198 0.195 2.461 1.430 0.873 0.866
Coffee 1.013 0.470 0.268 0.253 2.473 2.681 2.454 1.309
C-3PO 1.013 0.344 0.164 0.199 2.474 1.314 0.899 0.923

Cheeseburger 1.014 0.283 0.189 0.208 2.466 1.561 1.160 1.147

Table 1: Quantitative comparison of depth accuracy on simulated models.

(a) (b) λρ = 0.1

(c) λρ = 1 (d) λρ = 10

Figure 2: Texture copy. A correct albedo recovery model (b)
mitigates texture copy artifact which the input figure (a) is prone
to. The implications of poorly chosen albedo model can be easily
seen in reconstructions (c) and (d). We note that λρ = 0.1 was
used throughout section 4.

First, we start by performing a quantitative comparison
between our method and our implementation of the meth-
ods proposed by [14] and [39] which will be referred to as
HLK and WZNSIT respectively. In this experiment we use
synthetic data in order to have a reference model. We took
objects from the Stanford 3D repository [9] and the Smith-
sonian 3D archive and simulated a complex lighting envi-
ronment using Blender. In addition, we also used complete
3D models and scenes from the public Blendswap reposi-
tory. Each model is used to test a different scenario, ”Thai
Statue”1 tests a Lambertian object in a three-point light-
ing environment with minimal shadows. ”Lincoln”2 tests a
Lambertian object in a complex lighting environment with
multiple casted shadows. ”Coffee”3 involves a complex
scene with a coffee mug and splashed liquid. ”C3PO”4 is a
non-Lambertian object with a point light source. ”Cheese-
burger”5 is a non-Lambertian, multiple albedo object with
three-point lighting.

1http://graphics.stanford.edu/data/3Dscanrep
2http://3d.si.edu/downloads/27
3http://www.blendswap.com/blends/view/56136
4http://www.blendswap.com/blends/view/48372
5http://www.blendswap.com/blends/view/68651

(a)

(b) (c)

Figure 3: Mannequin. (a) Upper Left: Color Image. Upper
Right: Raw Depth. Bottom Left: Result of Wu et al. Bottom
Right: Our Result. (b), (c) Magnifications of the mannequin eye.
The mannequin’s hair and facial features can be easily recognized
in our reconstruction.

All models were rendered with Cycles renderer of
Blender6. We added Gaussian noise with zero mean and
standard deviation of 1.5 to the depth maps to simulate a
depth sensor noise. The algorithm parameters were set to
λρ = 0.1, λ1β = 1, λ2β = 1, τ = 0.05, σc =

√
0.05,

σd =
√

50, λ1z = 0.004, λ2z = 0.0075, these values were
carried throughout all our experiments. We evaluate the per-
formance of each method by measuring the median of the
depth error, and the 90th percentile of the depth error com-

6www.blender.org



(a) Shirt

(b) Baseball Cap

Figure 4: Results of shape enhancement of real world multiple albedo objects. Left to right: Color Image, Raw Depth, Bilateral
Filtering and the Proposed Method. Note how surface wrinkles and small surface protrusions are now visible.

pared to the ground truth. The results are summarized in
Table 1. An example of the accuracy improvement of our
method can be easily seen in Figure 1, which compares be-
tween the Thai Statue input errors and the output errors with
respect to the ground truth.

We now show the qualitative results of the proposed
framework from real data, captured by Intel’s Real-Sense
RGB-D sensor. First, we show how the proposed method
handles texture, which usually lead to artifacts in shape
from shading methods. In our experiment, we printed a text
on a white page and captured it with our RGB-D scanner.
Figure 2 shows how the texture copy artifact is mitigated
by correctly modeling the scene albedos using λρ. Fig-
ure 3 compares between the reconstruction results of WZN-
SIT and the proposed framework in a real world scenario
of a mannequin captured under natural lighting. The pro-
posed reconstruction procedure better captures the fine de-
tails. Figure 4 illustrates how our algorithm handles real
world shapes with multiple albedos. The algorithm success-
fully reveals the letters and eagle on the shirt along with
the ”SF” logo, ”champions” and even the stitches on the
baseball cap. One should also notice that the algorithm was
slightly confused by the grey ”N” which is printed on the
cap but do not stick out of it like the rest of the writing.
We expect such results to be improved with stronger priors,
however, incorporating such priors into real time systems is
beyond the scope of this paper.

Next, we show the robustness of our method to normal
outliers. Such robustness is important for real-time perfor-
mance, where segmenting the shape may cost precious time.
In turn, background normals distort the shading recovery

(a) (b) (c)

Figure 5: Robustness to normal outliers: Left to right: HLK
reconstruction with the entire depth map normals (a). Our method
reconstruction with the entire depth map normals (b). Magnifica-
tion of the results is presented in (c). The proposed method yield
accurate reconstruction despite the distorted shading.

process, which might degrade the surface reconstruction. In
this experiment, we run the method using the normals of the
entire depth map. Thus, we deliberately distort the shading
estimation process and examine how it affects the algorithm
output. We ran this test on our method and on HLK. The re-
sults are presented in Figure 5. We see that the proposed
framework can gracefully handle a large amount of normal
outliers, hence, it can be used in real-time scenarios with no
need to separate the object from its background.

In Figure 6 we can see how our method produces high
quality reconstruction of a multiple albedo object without
any prior knowledge of the shape or albedos. This is also



(a) (b) (c) (d)

(e) (f) (g)

Figure 6: Handling a multiple albedo object. (a) Color Image. (b) HLK Reconstruction. (c) WZNSIT Reconstruction. (d) Our
Reconstruction. (e) - (g) Magnifications of HLK, WZNSIT and Our Method respectively. Note how the proposed framework sharply
distinguish albedo changes.

Section Time
Bilateral Filter 3.8ms

Image alignment 31.1ms
Normal Estimation 5.3ms
Lighting Recovery 40.3ms
Surface Refinement 22.6ms

Total Runtime 103.1ms

Table 2: Algorithm’s profiling. Please see supplementary material
for a video of the real-time application.

crucial aspect for real-time performance and everyday use
in dynamic scenes.

Finally, we introduce a profiling for the shape from
RGBD method. An unoptimized implementation of the al-
gorithm was tested on an Intel i7 3.4GHz processor with
16GB RAM and an Nvidia Geforce GTX TITAN GPU. The
entire process runs at about 10 fps for a 640×480 depth pro-
files. The time breakdown of our algorithm is given in Ta-
ble 2. A demo of the real-time algorithm implementation
can be found in the supplementary material.

5. Conclusions
We introduced a novel computational approach that re-

covers details of a given rough surface using its intensity
image. Our method is the first to reconstruct explicitly the
surface profiles without integrating normals. Furthermore,

thanks to an efficient optimization scheme the algorithm
runs at about 10 frames per second. The proposed frame-
work is more accurate than reported state of the art and runs
approximately 20000 times faster.
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