
Efficient Globally Optimal Consensus Maximisation with Tree Search

Tat-Jun Chin∗, Pulak Purkait∗, Anders Eriksson† and David Suter∗

School of Computer Science, The University of Adelaide∗

School of Electrical Engineering and Computer Science, Queensland University of Technology†

Abstract

Maximum consensus is one of the most popular crite-
ria for robust estimation in computer vision. Despite its
widespread use, optimising the criterion is still customarily
done by randomised sample-and-test techniques, which do
not guarantee optimality of the result. Several globally op-
timal algorithms exist, but they are too slow to challenge the
dominance of randomised methods. We aim to change this
state of affairs by proposing a very efficient algorithm for
global maximisation of consensus. Under the framework of
LP-type methods, we show how consensus maximisation for
a wide variety of vision tasks can be posed as a tree search
problem. This insight leads to a novel algorithm based on
A* search. We propose efficient heuristic and support set
updating routines that enable A* search to rapidly find glob-
ally optimal results. On common estimation problems, our
algorithm is several orders of magnitude faster than previ-
ous exact methods. Our work identifies a promising solution
for globally optimal consensus maximisation1.

1. Introduction
Maximum consensus is one of the most popular robust

criteria for geometric estimation problems in computer vi-
sion. Given a set of measurements X = {xi}Ni=1, the crite-
rion aims to find the estimate θ that agrees with as many of
the data as possible (i.e., the inliers) up to a threshold ε

max
θ, I⊆X

|I|

subject to ri(θ) ≤ ε ∀xi ∈ I,
(1)

where ri(θ) is the residual of xi. For example, in triangu-
lation we wish to estimate the 3D point θ seen in N views,
where X contains the 2D observations of the point. The
residual ri(θ) is the reprojection error in the i-th view.

Random sample consensus (RANSAC) [7] has been the
dominant approach. The method randomly draws p-tuples
fromX , where p is the minimum number of data to instanti-
ate θ. The consensus score |I| of each sample θ is obtained,

1Source code is available on the authors’ homepage.

and the θ with the highest score and its consensus set I are
returned. A probabilistic bound on the number of samples
required can be derived as a stopping criterion.

A major shortcoming of randomised methods such as
RANSAC is the lack of absolute certainty that the obtained
solution is optimal, or indeed whether it represents a satis-
factory approximation at all. A less recognised fact is that
even if all

(
N
p

)
subsets are examined, we may not find the

globally optimal solution θ∗ to (1), since θ∗ does not gener-
ally correspond to an estimate from a p-tuple (see below).

Solving (1) exactly is computationally challenging. Sev-
eral authors proposed methods based on branch-and-bound
(BnB) [13, 21]. However, BnB is typically slow, especially
if θ is high-dimensional. In fact, RANSAC is suggested
to suboptimally preprocess the data (which may cause gen-
uine inliers to be discarded), before BnB is invoked to re-
fine the result. More fundamentally, the BnB methods are
specialised for linear residuals. For many vision problems,
this entails linearising ri(θ) and adopting algebraic residu-
als which are not geometrically meaningful.

It has been proven [15, 5] that for various estimation
tasks, θ∗ can be found as the solution on a subset of X of
size d, where d ≥ p and d � N (the actual value of d de-
pends on the particular problem). Both works proposed to
find θ∗ by exhaustively searching over all

(
N
d

)
subsets of X .

Although the number of subsets is polynomial w.r.t. N , in
realistic problems the number is impracticably large. Ols-
son et al. [15] also proposed using RANSAC with an opti-
mality verification step. However, the fact remains that an
enormous number of subsets may need to be sampled.

Due to the much greater computational expense, cur-
rently available global methods are not competitive against
RANSAC and its variants. In this paper, we make signif-
icant progress towards solving (1) exactly and efficiently.
Leveraging on the framework of LP-type methods [18, 14],
we show how maximising consensus can be casted as a tree
search problem. We then propose an algorithm based on A*
search [8] to traverse the tree. Similar in spirit to [15, 5],
we aim to find the optimal data subset. However, instead
of sampling or enumerating the subsets, our algorithm de-
terministically locates the best subset. The A* technique
ensures that only a tiny fraction of available subsets need

1

to be explored. Despite its combinatorial nature, our algo-
rithm is fast - on several common estimation problems, our
algorithm is orders of magnitude faster than previous ex-
act methods for maximum consensus. Further, our method
does not require linearising the residual.

1.1. Related work

L∞ minimisation (minmax problem) is well established
in the context of geometric estimation [10, 11]. The task is
to find the estimate θ that minimises the largest residual

min
θ

max
i

ri(θ). (2)

Whilst (2) is inherently non-robust since it effectively fits θ
on the outliers, it contains a single (global) minimum, pro-
vided ri(θ) is strictly quasiconvex and the data is nondegen-
erate. Algorithms based on bisection and other schemes [6]
have been proposed to solve (2) exactly.

Since the largest residuals are contributed by the outliers,
one can construct an outlier removal scheme where (2) is
first solved and the data corresponding to the largest residu-
als are removed [19, 16, 20]. The fitting and removal steps
can be conducted iteratively until the maximum error is be-
low a threshold ε. There is no guarantee, however, that the
remaining data is the largest possible consensus set, since
genuine inliers may also be removed during the iterations.

If, instead of the largest, we minimise the j-th largest
residual (j ≤ N), the outliers can be ignored and a ro-
bust estimate can be obtained. However, the problem is
now much harder since multiple local minima exist. Ke
and Kanade [11] extended their algorithm to approximately
minimise the j-th largest residual. Matoušek proposed a
method [14] to examine all the minima of the problem to
find the global minimiser. Li [12] pioneered the usage of
Matoušek’s method to conduct robust triangulation. It is
provable that the time complexity of Matoušek’s procedure
is a p-th order polynomial on the number of outliers. How-
ever, on typical-sized problems the search is painfully slow.

In general, knowing in advance the correct value of j
(i.e., the number of inliers) can be non-trivial. On the other
hand setting the inlier threshold ε in (1) is arguably eas-
ier since we usually have an idea of how far the inliers can
deviate (assuming geometrically meaningful residual func-
tions are employed). For example, the reprojection error of
inliers in triangulation is typically within a few pixels.

2. Background
2.1. Solvable problems

We first define the type of problems solvable by our max-
imum consensus algorithm. We require that the residual
function ri(θ) be pseudoconvex. This is known to include
many common applications [17]. Examples are as follows.

Linear regression The linear relation is defined by vector
θ ∈ RM and the residual function is defined as

ri(θ) = |bi − θTai|, (3)

where xi = [aTi bi]
T . Here ri(θ) is convex, which is a

stricter condition than pseudoconvexity.

Triangulation We wish to estimate the 3D point θ seen
in N views. The i-th image point and camera matrix are
respectively xi and Pi ∈ R3×4. The reprojection error is

ri(θ) =
‖(Pi,1:2 − xiPi,3)θ̃‖

Pi,3θ̃
, (4)

where θ̃ = [θT 1]T , Pi,1:2 is the first-two rows of Pi, and
Pi,3 is the third row of Pi. It is known that (4) is pseu-
doconvex. The additional constraint Pi,3θ̃ > 0 must be
imposed such that the 3D point lies in front of the cameras.

Homography fitting Given a set of point matches X =
{(ui,u′i)}Ni=1 across two views, we wish to estimate the ho-
mography θ ∈ R3×3 that aligns the points. The residual is

ri(θ) =
‖(θ1:2 − u′iθ3)ũi‖

θ3ũi
, (5)

where ũi = [uTi 1]T , θ1:2 is the first-two rows of θ, and
θ3 is the third row of θ. It has been established that (5) is
pseudoconvex. Note the resemblance of (5) to (4).

Many other estimation problems in computer vision nat-
urally involve pseudoconvex residuals, e.g., camera resec-
tioning, SfM with known rotations. In fact, Olsson et
al. showed that all the problems in [10] are pseudoconvex.

2.2. LP-type problems

LP-type problems can be regarded as generalisations of
linear programming (LP) problems [18]. They are inti-
mately connected to minmax problems such as (2). In par-
ticular, it has been established that the minmax of a set of
pseudoconvex functions is an LP-type problem [2, 6]. This
implies the satisfaction of several key properties [1].

First, we define f(X) as the solution (the minimal objec-
tive value) of the minmax problem (2) on data X , and θ(X)
as the corresponding globally optimal estimate.

Property 1 (Monotonicity) For every two sets P ⊆ Q ⊆
X , we can establish the inequality f(P) ≤ f(Q) ≤ f(X).

Property 2 (Locality) For every two sets P ⊆ Q ⊆ X and
every x ∈ X , if f(P) = f(Q) = f(P ∪ {x}), then we can
establish the equality f(P) = f(Q∪ {x}).

The concept of basis is integral to LP-type problems.

2

Definition 1 (Basis) A basis B is a subset of X whereby
every proper subset of B has a strictly smaller value of f
than B itself, i.e., if A ⊂ B then f(A) < f(B).

Definition 2 (Combinatorial dimension) The combinato-
rial dimension is the largest possible size for a basis. For
pseudoconvex problems where θ lies in a p-dimensional do-
main, the combinatorial dimension is p+ 1 [6].

Definition 3 (Violation set, coverage and level) The vio-
lation set V(B) of a basis B ⊆ X contains the data from X
whose residuals are greater than f(B) when evaluated at
θ(B). The coverage C(B) of B is the complement of V(B).
The level l(B) of B is the size of V(B).

Definition 4 (Support set) The level-0 basis for a dataset
X is called the support set of X .

Solving (2) amounts to finding the support set of X ; Fig. 1
illustrates. Assuming X is non-degenerate2, it has only one
support set (cf. the minmax problem has a single minimum).

Consider modifying (2) such that the j-th largest residual
is minimised

min
θ

r(j)(θ), (6)

where r(1)(θ), . . . , r(N)(θ) are the sorted residuals given
θ. Defining k := N − j, we can rewrite (6) as

min
B

f(B), s.t. l(B) = k (7)

i.e., we seek the level-k basis B whose estimate θ(B) gives
the smallest f(B) value. By definition all level-k bases will
have j residuals less than or equal to f(B) at θ(B). To
solve (7) for k > 0, we describe Matoušek’s method [14].

Definition 5 (Basis adjacency) Two bases B and B′ of re-
spectively levels k and k + 1 are adjacent if V(B′) =
V(B) ∪ {x} for some x ∈ B.

Property 3 (Existence of basis path) There exists a path
from the level-0 basis to every level-k basis (k > 0) by
following adjacent bases. See [14] for the proof.

The above property implies that the set of bases can be
arranged in a tree structure, where two bases are linked by
an edge if they are adjacent. Matoušek proposed to gener-
ate the tree up to the k-th level (by iteratively removing data
from bases and refitting to obtain adjacent bases in the next
level), such that all level-k bases can be examined; Fig. 2(a)
illustrates. Further, he also proved that the number of level-
k bases is bounded above byO((k+1)p). In practice, how-
ever, the number of bases can be very high, and the method
is suitable only for a small number of outliers (one or two)3.

2Else, data perturbation methods can be applied [14]. Henceforth, for
brevity we assume that all input data X is non-degenerate

3As the title of [14] suggests, only a few outliers can be handled.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1

0

1

2

Level−0 basis

Level−3 basis

Figure 1. Illustrating the concept of basis on linear regression with
θ ∈ R2 (p = 2). Finding the level-0 basis and its corresponding
estimate (red solid line) solves (2) on X . A level-3 basis is also
shown; observe that 3 points violate the corresponding estimate.
For the linear regression problem (3), all bases are of size p+ 1.

3. Consensus maximisation as tree search
We are now ready to describe our novel algorithm for

solving the maximum consensus problem (1).

Definition 6 (Feasibility) A basisB is feasible if f(B) ≤ ε.
Similarly, a set Q ⊆ X is feasible if f(Q) ≤ ε.

We can rewrite (1) as the following related problem

min
B

l(B), s.t. f(B) ≤ ε. (8)

In words, we seek the lowest level basis (i.e., exclude as
few data as possible) that is feasible. Given an optimal B∗
for (8), the maximum consensus set I∗ is simply C(B∗).

To find B∗, we can traverse Matoušek’s tree structure us-
ing breadth-first search (BFS), i.e., test for feasibility and
expand (generate adjacent bases of) all the bases at a par-
ticular level, before going to the next level. Such a search
regime guarantees that the first feasible basis found is the
shallowest (has the lowest level). Fig. 2(b) depicts the idea.

Assume that B∗ occurs at level k. In contrast to solv-
ing (7) with the same k, the BFS algorithm does not attempt
to generate all level-k bases. However, it must still generate
all the bases at the previous levels, thus BFS is not efficient
in practice. Nonetheless, considerable improvements to this
basic scheme can be made, as we describe in the following.
For quick reference, Alg. 1 summarises our method.

3.1. Avoiding repeated bases

Starting from the root node (level-0 basis), there are mul-
tiple paths for arriving at the same level-k basis. This cor-
responds to the fact that as long as the same set of data are
removed, the order of the removal is not important. Signif-
icant redundancy thus exists in the tree. This characteristic
was not exploited in Matoušek’s original method. Note that
for the tree in Fig. 2, the redundancy has been removed.

In our algorithm, a basis B (and the branch leading from
it) are ignored if B has been seen previously (Line 10 in

3

Level 0

Level 1

Level 2

Level 3
Level 4

Level-0 basis

Adjacent bases

f(B)

θ(B)

(a) Matoušek’s method for solving (6) with k = 4.

Level 0

Level 1

Level 2

Level 3
Level 4

Level-0 basis

Adjacent bases

f(B)

θ(B)

ε

Feasible

(b) Breadth-first search for solving (8).

Level 0

Level 1

Level 2

Level 3
Level 4

Level-0 basis

Adjacent bases

f(B)

θ(B)

ε

Feasible

(c) A* search for solving (8).

Figure 2. Tree traversal for solving (6) (panel a) and (8) (panels b and c) on a problem with p = 1. The ordinate is f(B) while the abscissa is
θ(B). Nodes in red are bases expanded in the respective algorithms. In Matoušek’s method, all level-k bases (here, k = 4) must be tested,
since there are multiple local minima. In panels b and c, the two different globally optimal solutions found are equally good w.r.t. (8).

Algorithm 1 A* search for consensus maximisation
1: B ← Support set of X .
2: Insert B with priority e(B) into queue q.
3: Initialise hash table T to null.
4: while q is not empty do
5: Retrieve from q the B with the lowest e(B).
6: if f(B) ≤ ε then
7: Exit with C(B) as the maximum consensus set.
8: end if
9: for each x ∈ B do

10: if indices of V(B) ∪ {x} do not exist in T then
11: Hash indices of V(B) ∪ {x} into T .
12: B′ ← Support set of [C(B) \ {x}].
13: Insert B′ with priority e(B′) into q.
14: end if
15: end for
16: end while
17: Return error (no feasible solution).

Alg. 1). Since it is possible for two equal bases to have dif-
ferent coverages, two basesB1 andB2 are declared the same
only if C(B1) = C(B2), or equivalently, if V(B1) = V(B2).
We propose to hash the violation set of seen bases into a
table. Let Q ⊆ X be an arbitrary subset. The indices of
the data in Q are sorted to yield an integer sequence. We
convert the integers to ASCII characters and concatenate
them into a string. The string is then hashed into a table via
standard techniques to facilitate constant time repetition de-
tections. For example, the set Q = {x71,x10,x5,x4,x28}
is converted to the string 0405102871 and hashed. This
simple idea brings significant computational savings.

3.2. Informed search with A* algorithm

Our approach is based on the A* algorithm, which is an
informed search method used extensively in pathfinding [8].
Whilst BFS chooses the shallowest basis in the queue to test
and expand, A* chooses the basis with the lowest evaluation

value e (Step 5 in Alg. 1), which is defined as

e(B) = l(B) + h(B), (9)

where h is a heuristic. Intuitively, h(B) estimates the num-
ber of data to removed from C(B) to make it feasible. Bases
with low e are shallow and close to feasibility. Expand-
ing according to e thus accelerates the search; see Fig. 2(c).
Note that if h(B) = 0 for all B, A* reduces to BFS.

An immediate question is whether A* is optimal, i.e.,
does it always find the shallowest feasible basis?

Definition 7 (Admissibility) A heuristic h is admissible if

h(B) ≥ 0 and h(B) ≤ h∗(B), (10)

where h∗(B) is the minimum number of data that must be
removed from C(B) to make the data feasible. Implied by
the above is that h(B) = 0 if B is feasible.

Note that calculating h∗(B) amounts to solving exactly
the original maximum consensus problem on C(B).

Theorem 1 A* is optimal if h is admissible.

Proof Following [8], we need to show that when a subop-
timal feasible basis B† exists in the queue, it will not be
chosen and tested before an optimal basis B∗ exists in the
queue. Let B be another basis in the queue on the path lead-
ing to B∗ (such a basis B always exists in a tree structure,
e.g., the root basis is one). The following can be established

e(B†) = l(B†) (since B† is feasible)

> l(B∗) (since B† is suboptimal)
= l(B) + h∗(B) (since B leads to B∗)
≥ l(B) + h(B). (since h is admissible) (11)

The above result shows that B which lies on the path to B∗
will always have a higher priority than B† to be tested and
expanded. Therefore A* will always find B∗ before B†.

If the current lowest e value in the queue is given by more
than one basis, we choose the B with the lowest f(B) first.
This tie breaking does not affect the optimality of A*.

4

3.3. Heuristic for consensus maximisation

Our heuristic is inspired by previous outlier removal and
reinsertion techniques [19, 16, 20] but with significant mod-
ifications. We call our heuristic hins and prove that it is
applicable under A*. To calculate hins(B), let

O = {B1,B2, . . . ,BM}, f(Bm) > ε ∀m (12)

contain the sequence of support sets that must be recursively
removed from C(B) to make C(B) feasible, where

Bm = Support set of [C(B) \ {B1, . . . ,Bm−1}] for m > 1

andB1 = B. As an example, Fig. 1 shows the first-2 support
sets of such a sequence. Let F be the remaining data, i.e.,

F = C(B) \ O, where f(F) ≤ ε. (13)

We then attempt to insert the individual data from O one-
by-one into F . If an insertion makes F infeasible, the
support set of the enlarged F is removed and the heuris-
tic hins(B) is incremented by one; else if the enlarged F
remains feasible, the insertion is made permanent with no
change to the heuristic. Alg. 2 gives a formal description.

Theorem 2 hins is admissible.

Proof That hins is nonnegative is obvious. Let C(B) =
F∗ ∪ O∗, where F∗ is the largest feasible subset of C(B).
O∗ is thus the smallest subset that must be removed from
C(B) to achieve feasibility, i.e., h∗(B) = |O∗|. For intu-
ition, we refer to F∗ and O∗ as “true” inliers and outliers.

Let x be a datum from O, and B′ the support set of [F ∪
{x}]. If B′ is infeasible, then by Property 1 (monotonicity)

f(F∗ ∪ B′) ≥ f(B′) > ε, (14)

i.e., B′ must contain at least one true outlier. The removal of
B′ from F ∪{x} thus removes at least one true outlier from
F ∪ {x} (note that the remaining set F ← F ∪ {x} \ B′ is
always feasible). There are thus at most |O∗| infeasible sup-
port set removals. Since each removal increments hins(B)
by one, its final value cannot be greater than h∗(B).

Note also that in general O∗ is not a subset of O and the
proof above does not assume that it is.

3.4. Early termination

Define g(B) as an upper bound on the number of data
that must be removed from C(B) to make C(B) feasible.
Coupled with the heuristic function, we can thus establish

h(B) ≤ h∗(B) ≤ g(B). (15)

Given g(B), it is possible to terminate Alg. 1 early. Specif-
ically, if h(B) = g(B) for the B currently under test in
Line 6, we can exit regardless of whether B is feasible. The
maximum consensus set I∗ is simply F as defined in (13).

Algorithm 2 Calculation of hins(B).
1: If f(B) ≤ ε, return 0.
2: O ← ∅.
3: while f(B) > ε do
4: O ← O ∪ B.
5: B ← Support set of [C(B) \ B].
6: end while
7: hins ← 0, F ← C(B).
8: for each B ∈ O do
9: for each x ∈ B do

10: B′ ← Support set of [F ∪ {x}].
11: if f(B′) ≤ ε then
12: F ← F ∪ {x}.
13: else
14: hins ← hins + 1.
15: F ← F ∪ {x} \ B′.
16: end if
17: end for
18: end for
19: Return hins.

Theorem 3 A* is optimal with early termination.

Proof The value given by

e∗(B) = l(B) + h∗(B) (16)

is the minimum number of data that must be removed from
X to achieve feasibility, given that we have removed V(B).
Comparing with (9), it is clear that e(B) ≤ e∗(B).

If the current B has h(B) = g(B), then from (15),
e(B) = e∗(B). Since we search the tree according to the
A* method, e(B) ≤ e(B′) where B′ is any other basis in
the queue. Thus e∗(B) ≤ e(B′) ≤ e∗(B′), i.e., the path to
the shallowest feasible basis must pass through B.

We propose the following upper bound

grem(B) = |C(B) \ F| = |O|, (17)

which can be obtained as a by-product of Alg. 2.

Theorem 4 grem(B) ≥ h∗(B).

Proof Since F is feasible, then |F| ≤ |F∗| where F∗
is the largest feasible subset of C(B). This implies that
|grem(B)| ≥ |O∗| = h∗(B), where O∗ = C(B) \ F∗.

4. Efficient support set updating
It is clear that the overall efficiency of our algorithm

hinges on the efficient calculation of support sets. This
amounts to solving the minmax problem (2) for the relevant

5

data subsets. Fortunately, except the initialisation in Step 1
of Alg. 1 where the problem needs to be solved from scratch
on all X , all other support set computations merely requires
updating a known support set after a small number of data
are removed (Step 12 in Alg. 1 and Step 5 in Alg. 2) or in-
serted (Step 10 in Alg. 2). Thus, our method can be made
very fast if the update routine is implemented carefully.

Various schemes can be used to calculate support sets
for pseudoconvex residuals, e.g., generalised LP [3], bisec-
tion [10, 11] or pseudoconvex programming [6]. In fact,
nonlinear (iterative) optimisation can be used to directly to
seek the globally optimal solution [17]. To this end, rewrite
and solve (2) as the constrained nonlinear problem

min
θ,γ

γ, s.t. ri(θ) ≤ γ, (18)

where the inner max operator is removed. Note that for
certain applications, additional constraints must imposed on
θ, e.g., cheirality for triangulation (4). Given the solution
θ∗ and γ∗, the support set can be obtained as the data whose
residual ri(θ∗) equals γ∗. In our work, we use Matlab’s
SQP algorithm in fmincon to solve (18).

We build an efficient support set update routine based
on SQP. Let P and Q be two subsets of X , where θ(P) is
known and we wish to update it to obtain θ(Q). Also, let
Q be obtained from P by removing from or adding to P a
small number of data; we thus expect θ(Q) to be close to
θ(P). Our update procedure is to simply “hot start” SQP
with θ(P) when solving (18) on Q. Given the solution
θ(Q), the support set ofQ can be “read off” from the resid-
uals. In practice, this simple update scheme is very efficient.

Much greater efficiency can be obtained by specialising
the update routine for certain types of residuals. For linear
regression (3), we employ the well-known vertex-to-vertex
descend algorithm (see [4, Chapter 2]) for Chebyshev re-
gression (l∞ minimisation), which is extremely fast.

5. Results
We performed a number of experiments on several

common estimation problems. We focussed on compar-
ing our algorithm (A*) against globally optimal methods
for robust estimation. For the quantile regressor (7), we
tested Matoušek’s method [14]. For the maximum con-
sensus estimator (1), we tested BFS (Sec. 3), BnB with
MaxFS formulation4 [21], and BnB with bilinear formula-
tion (BILIN)5 [13]. RANSAC was also run as a baseline.

We divided our results into two categories: linear regres-
sion (3) and problems with pseudoconvex residuals. Note
that MaxFS and BILIN only works for linearised residuals.

A* was implemented fully in Matlab: support set up-
dating was conducted using fmincon for the pseudo-

4Using our own implementation. The original code was unavailable.
5Using the original author’s implementation.

0 0.2 0.4 0.6 0.8 1 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

A* result (global) vs RANSAC result

2D Points
RANSAC fit
A* fit
RANSAC inliers
Common inliers
A* inliers

(a) Typical data instance and lines fitted by RANSAC and A*. In this data
instance, RANSAC found 76 inliers while A* found 87 inliers.

0 5 10 15 20 25
0

5

10

15

20

Number of outliers
R

un
tim

e
(s

)

RANSAC
MaxFS
Matousek
BFS
A*

(b) Average runtime of different methods against number of outliers.

Figure 3. Line fitting results.

convex case, whilst the vertex-to-vertex algorithm was pro-
grammed by ourselves. These routines were also used for
Matoušek and BFS. MaxFS requires solving Mixed Integer
Linear Programming (MILP) problems, for which we used
the state-of-the-art Gurobi solver. For the LP subroutines in
BILIN, we made use of the highly efficient MOSEK solver.

For RANSAC, the standard stopping criterion [7] was
used with confidence ρ = 0.99. However, if the crite-
rion had been satisfied before 100 iterations, we forced
RANSAC to continue until 100 iterations. On the other
hand, if the number of unique p-subsets for the problem was
less than 100, all the p-subsets were enumerated and tested.

All the experiments were run on a standard system with
2.70 GHz processor and 8 GB of RAM.

5.1. Linear regression

Line fitting We generated N = 100 points around a
straight line under Gaussian noise with σin = 0.1. A num-
ber of the points were then corrupted by a larger Gaussian
noise (σout = 1) to simulate outliers. The inlier threshold
in (1) was chosen as ε = 0.3, and k for (7) was set as the
true number of outliers (known after solving (1) exactly).

Fig. 3(a) shows a typical data instance and result. Inliers
found by RANSAC are circled in red, while those found by
A* are circled in blue. Points circled in green are inliers
found by both RANSAC and A*. As expected, RANSAC
found a suboptimal solution with 76 inliers, while A* found
the globally optimal solution with 87 inliers.

6

Linearised homography estimation Linearised fundamental matrix estimation
Road Sign Cambridge Keble College Valbonne Church Merton College III

Methods NSub Runtime (s) NSub Runtime (s) NSub Runtime (s) NSub Runtime (s) NSub Runtime (s)
RANSAC 100 0.0903 100 0.1130 100 0.3689 100 0.0417 100 0.0448
MaxFS 67548 1.0433 65118 1.8661 1976336 > 3600 16267 9.2132 15515 5.7162
BILIN 2526 > 3600 1252 > 3600 8 > 3600 2220 > 3600 140 > 3600
Matoušek 220743 > 3600 189901 > 3600 179353 > 3600 238006 > 3600 237124 > 3600
BFS 166852 > 3600 143750 > 3600 137062 > 3600 71178 525.2548 194183 3234.6948
A* 911 1.2936 1473 2.2619 560 2.9121 1838 1.3922 589 0.6458

N = 36, p = 8, ε = 0.1 N = 55, p = 8, ε = 0.1 N = 299, p = 8, ε = 0.1 N = 58, p = 8, ε = 0.1 N = 187, p = 8, ε = 0.1
|IR| = 29.67, |I∗| = 30 |IR| = 44.80, |I∗| = 47 |IR| = 282.74, |I∗| = 284 |IR| = 43.66, |I∗| = 52 |IR| = 176.69, |I∗| = 181

N: data size, p: number of parameters, ε: inlier threshold
|IR|: average consensus size of RANSAC, |I∗|: optimal consensus size, NSub: number of subproblems solved

Table 1. Results for linearised homography estimation and linearised fundamental matrix estimation.

We varied the number of points that were corrupted
as outliers, and invoke all the compared methods. Each
method was run 100 times, and the average runtime was
recorded. Note that, apart from RANSAC, the methods de-
terministically gave the same regression result. Fig. 3(b)
shows the average consumed time of the different methods
against number of outliers (again, this number is known af-
ter (1) is solved). As predicted, Matoušek and BFS scaled
extremely badly with the number of outliers, since progres-
sively larger tree depth need to be explored. MaxFS also
scaled badly with the number of outliers. We do not plot
BILIN since it required more than 120 seconds even for 1
outlier. A* was only slower than RANSAC but vastly out-
performed the other methods. The scaling property of A*
was also much better. We observed that RANSAC produced
suboptimal solutions in 97% of the runs.

Linearised homography We tested on homography es-
timation using linear regression, where the dimensionality
of θ is 8 (see [9, Chapter 4] on linearising the homography
constraint). In Sec. 5.2, we will present results on homog-
raphy estimation using geometric (pseudoconvex) residuals.
Note that each keypoint match produces two residual func-
tions; thus the number of data N and outliers k are doubled
in the actual optimisation (see [9, Chapter 4] for details).

We tested on three image pairs, the first two pairs used
extensively in previous works on robust geometric estima-
tion: Road Sign (image index 1 and 2) [16], Keble Col-
lege (image index 2 and 3)6, and Cambridge (downloaded
from Flickr); see Fig. 4. SIFT keypoints were detected and
matched using the VLFeat toolbox7, and Lowe’s second
nearest neighbour test was invoked to prune matches. The
keypoints were then normalised before generating the lin-
earised homography constraints. The inlier threshold ε was
chosen as ε = 0.1, and k for quantile regression was set
as the true outlier count. Table 1 presents the results of all
methods (results of RANSAC are averages over 100 runs).

In addition to reporting actual runtime, we also show the

6http://www.robots.ox.ac.uk/˜vgg/data/
7http://www.vlfeat.org

(a) Road Sign (image index 1 and 2)

(b) Keble College (image index 2 and 3)

(c) Cambridge

Figure 4. Homography estimation result by A* on the three image
pairs. Lines in green and red respectively indicate detected inlier
and outlier SIFT keypoint matches.

number of subproblems (NSub) invoked/solved. This is de-
fined as the following for the various methods:

• RANSAC: Number of trials before termination.
• MaxFS: Number of simplex iterations as reported in

the Gurobi output.

7

Homography estimation (pseudoconvex residual) Triangulation (pseudoconvex residual)
Road Sign Cambridge Keble College Cathedral House

Methods NSub Runtime (s) NSub Runtime (s) NSub Runtime (s) NSub Runtime (s) NSub Runtime (s)
RANSAC 100 0.0815 100 0.0824 100 0.1371 35 2.5845 56 4.1530
Matoušek 54921 1909.1582 34187 > 3600 12912 > 3600 280 12.8718 427 18.0139

BFS 8530 747.3163 37368 > 3600 14104 > 3600 119 5.0947 151 5.9715
A* 688 120.9280 1599 262.2883 56 19.7666 136 5.5920 281 8.7528

N = 36, p = 8, ε = 0.1 N = 55, p = 8, ε = 0.1 N = 299, p = 8, ε = 0.1 N = 7, p = 3, ε = 0.01N = 8, p = 3, ε = 0.01
|IR| = 29.85, |I∗| = 30 |IR| = 44.70, |I∗| = 47 |IR| = 282.47, |I∗| = 284 |IR| = 1, |I∗| = 2 |IR| = 3, |I∗| = 4

N: data size, p: number of parameters, ε: inlier threshold
|IR|: average consensus size of RANSAC, |I∗|: optimal consensus size, NSub: number of subproblems solved

Table 2. Results for homography estimation and triangulation with pseudoconvex residuals.

• BILIN: Number of LP instances solved as reported in
the MOSEK output.
• Matoušek, BFS and A*: Number of support set update

instances (including in heuristic computation for A*).

A runtime limit of 1 hour was imposed on all methods. For
methods that did not terminate within the limit, the NSub
values reported were as obtained at the 1 hour mark.

It is clear that A* was much faster than the other global
optimisers. Although A* still took two orders of magni-
tude more time than RANSAC, the fact that A* terminated
in seconds makes it a very practical global optimiser. BFS
and Matoušek did not finish within 1 hour, thus pointing
to the vast improvement in tree search efficiency given by
our ideas in Sec. 3. MaxFS was efficient for Road Sign
and Cambridge; however, in Keble College its run time
increased drastically, owing to the much larger data size
N . BILIN did not finish within 1 hour on all datasets; the
method also suffers from scalability issues as N increases.

Linearised fundamental matrix We repeated the previ-
ous experiment for linearised fundamental matrix estima-
tion, where the parameter of interest θ is 8 dimensional and
inlier threshold ε = 0.1 (see [9, Chapter 11] for the con-
straint linearisation step). To cogently test the optimisation
performance of all methods, we did not enforce the rank-2
constraint on the resulting fundamental matrices. For this
experiment, we used Valbonne Church (image index 3 and
7) and Merton College III (image index 2 and 3) images
from Oxford VGG. Results are shown in Table 1. Similar
performances were observed for all methods.

5.2. Pseudoconvex residuals

Homography estimation We used the same datasets and
settings as the linearised homography estimation experi-
ment. The inlier threshold ε was set to 0.1 pixels, but due to
using the pseudoconvex residual function (5), the maximum
consensus sets obtained were different from the linearised
case. The results are shown in Table 2. It is apparent that
BFS and Matoušek were faster here than in the linearised
case, even though support set updating is slower for pseu-
doconvex residuals. The reason behind this is that there is

no doubling of the effective data size and outlier numbers
due to linearising the homography constraint (observe that
NSub values were much higher in Table 1). Although A*
was slower in this experiment, it was still much faster than
BFS and Matoušek, especially on the larger Cambridge and
Keble College datasets. Note that A* managed to return the
globally optimal estimate within tens of seconds.

Triangulation We used the Cathedral and House image
sequences [16], which contain a large number of feature
tracks. Tracks which are shorter than 7 frames were re-
moved, thus 191 and 547 tracks remained for Cathedral and
House respectively. For each feature track, the different
methods were executed with an inlier threshold of 0.01 pix-
els. Table 2 summarises the results, which were averaged
over the number of tracks in each dataset. Again, A* was
much more efficient than Matoušek and BFS.

From a practical standpoint, owing to the small p and N
for this problem (the longest track was less than N = 20
for both datasets), the globally optimal result can be more
efficiently found by exhaustively testing all

(
N
p+1

)
subsets

of X [15, 5]. Nonetheless, our conclusion that A* is more
efficient than Matoušek and BFS still holds. Note also that
although RANSAC enumerated all

(
N
p

)
minimal subsets in

these problems, it was unable to find the global optima.

6. Conclusions
We presented an efficient globally optimal algorithm for

maximum consensus, based on the A* tree search algo-
rithm. A heuristic function was proposed and proven to
be admissible for use with A*. Experiments showed that
the runtime of our method is several orders of magnitude
smaller than previous exact methods. Our work identifies
a promising direction to solve maximum consensus exactly.
The good performance of A* relies on the tightness of the
heuristic h as a lower bound of h∗. Our method thus has
great potential to be speeded up further by constructing spe-
cialised heuristic functions for the intended applications.

Acknowledgements This work was supported by ARC
grants DP130102524 and DE130101775.

8

References
[1] http://en.wikipedia.org/wiki/LP-type_problem. 2
[2] N. Amenta, M. Bern, and D. Eppstein. Optimal point place-

ment for mesh smoothing. In SODA, 1997. 2
[3] B. Chazelle and J. Matoušek. On linear-time deterministic

algorithms for optimization problems in fixed dimensions.
In Symp. Discrete Algorithms, 1993. 6

[4] E. W. Cheney. Introduction to approximation theory.
McGraw-Hill, 1966. 6

[5] O. Enqvist, E. Ask, F. Kahl, and K. Åström. Robust fitting
for multiple view geometry. In ECCV, 2012. 1, 8

[6] D. Eppstein. Quasiconvex programming. Combinatorial and
Computational Geometry, 25, 2005. 2, 3, 6

[7] M. A. Fischler and R. C. Bolles. Random sample consen-
sus: a paradigm for model fitting with applications to image
analysis and automated cartography. Comm. of the ACM,
24(6):381–395, 1981. 1, 6

[8] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Trans. on Systems Science and Cybernetics, 4(2):100–107,
1968. 1, 4

[9] R. Hartley and A. Zisserman. Multiple view geometry in
computer vision. Cambridge University Press, 2nd edition,
2004. 7, 8

[10] F. Kahl. Multiple view geometry and the l∞-norm. In ICCV,
2005. 2, 6

[11] Q. Ke and T. Kanade. Quasiconvex optimization for robust
geometric reconstruction. In ICCV, 2005. 2, 6

[12] H. Li. A practical algorithm for l∞ triangulation with out-
liers. In CVPR, 2007. 2

[13] H. Li. Consensus set maximization with guaranteed global
optimality for robust geometry estimation. In ICCV, 2009.
1, 6

[14] J. Matoušek. On geometric optimization with few vio-
lated constraints. Discrete and computational geometry,
14(1):365–384, 1995. 1, 2, 3, 6

[15] C. Olsson, O. Enqvist, and F. Kahl. A polynomial-time
bound for matching and registration with outliers. In CVPR,
2008. 1, 8

[16] C. Olsson, A. Eriksson, and R. Hartley. Outlier removal us-
ing duality. In CVPR, 2010. 2, 5, 7, 8

[17] C. Olsson, A. Eriksson, and F. Kahl. Efficient optimization
for l∞-problems using pseudoconvexity. In ICCV, 2007. 2,
6

[18] M. Sharir and E. Welzl. A combinatorial bound for linear
programming and related problems. In STACS, 1992. 1, 2

[19] K. Sim and R. Hartley. Removing outliers using the l∞
norm. In CVPR, 2006. 2, 5

[20] J. Yu, A. Eriksson, T.-J. Chin, and D. Suter. An adversarial
optimization approach to efficient outlier removal. In ICCV,
2011. 2, 5

[21] Y. Zheng, S. Sugimoto, and M. Okutomi. Deterministically
maximizing feasible subsystems for robust model fitting with
unit norm constraints. In CVPR, 2011. 1, 6

9

http://en.wikipedia.org/wiki/LP-type_problem

