


requiring two weeks on 300 cores to process a dataset with
200,000 images.

We introduce a framework for Cryo-EM density estima-
tion, formulating the problem as one of stochastic optimiza-
tion to perform maximum-a-posteriori (MAP) estimation in
a probabilistic model. The approach is remarkably ef�cient,
providing useful low resolution density estimates in an hour.
We also show that our stochastic optimization technique is
insensitive to initialization, allowing the use of random ini-
tializations. We further introduce a novel importance sam-
pling scheme that dramatically reduces the computational
costs associated with high resolution reconstruction. This
leads to speedups of 100,000-fold or more, allowing struc-
tures to be determined in a day on a modern workstation. In
addition, the proposed framework is �exible, allowing parts
of the model to be changed and improved without impacting
the estimation;e.g., we compare the use of three different
priors. To demonstrate our method, we perform reconstruc-
tions on two real datasets and one synthetic dataset.

2. Background and Related Work

In Cryo-EM, a puri�ed solution of the target molecule
is cryogenically frozen into a thin (single molecule thick)
�lm, and imaged with a transmission electron microscope.
A large number of such samples are obtained, each of which
provides a micrograph containing hundreds of visible, in-
dividual molecules. In a process known asparticle pick-
ing, individual molecules are selected, resulting in a stack
of croppedparticle images. Particle picking is often done
manually, however there have been recent moves to partially
or fully automate the process [17, 40]. Each particle image
provides a noisy view of the molecule, but with unknown
3D pose, see Fig.2 (right). The reconstruction task is to es-
timate the 3D electron density of the target molecule from
the potentially large set of particle images.

Common approaches to Cryo-EM density estimation,
e.g., [7, 11, 37], use a form of iterative re�nement. Based
on an initial estimate of the 3D density, they determine the
best matching pose for each particle image. A new density
estimate is then constructed using the Fourier Slice The-
orem (FST);i.e., the 2D Fourier transform of an integral
projection of the density corresponds to a slice through the
origin of the 3D Fourier transform of that density, in a plane
perpendicular to the projection direction [13]. Using the
3D pose for each particle image, the new density is found
through interpolation and averaging of the observed particle
images.

This approach is fundamentally limited in several ways.
Even if one begins with the correct 3D density, the low SNR
of particle images makes accurately identifying the correct
pose for each particle nearly impossible. This problem is
exacerbated when the initial density is inaccurate. Poor
initializations result in estimated structures that are either

clearly wrong (see Fig.9) or, worse, appear plausible but
are misleading in reality, resulting in incorrectly estimated
3D structures [12]. Finally, and crucially for the case of
density estimation with many particle images, all data are
used at each re�nement iteration, causing these methods to
be extremely slow. Mallick et al. [25] proposed an approach
which attempted to establish weak constraints on the rela-
tive 3D poses between different particle images. This was
used to initialize an iterative re�nement algorithm to pro-
duce a �nal reconstruction. In contrast, our re�nement ap-
proach does not require an accurate initialization.

To avoid the need to estimate a single 3D pose for each
particle image, Bayesian approaches have been proposed in
which the 3D poses for the particle images are treated as la-
tent variables, and then marginalized out numerically. This
approach was originally proposed by Sigworth [35] for 2D
image alignment and later by Scheres et al. [33] for 3D es-
timation and classi�cation. It was since been used by Jaitly
et al. [14], where batch, gradient-based optimization was
performed. Nevertheless, due to the computational cost of
marginalization, the method was only applied to small num-
bers of class-average images which are produced by cluster-
ing, aligning and averaging individual particle images ac-
cording to their appearance, to reduce noise and the number
of particle images used during the optimization. More re-
cently, pose marginalization was applied directly with par-
ticle images, using a batch Expectation-Maximization algo-
rithm in the RELION package [34]. However, this approach
is extremely computationally expensive. Here, the proposed
approach uses a similar marginalized likelihood, however
unlike previous methods, stochastic rather than batch op-
timization is used. We show that this allows for ef�cient
optimization, and for robustness with respect to initializa-
tion. We further introduce a novel importance sampling
technique that dramatically reduces the computational cost
of the marginalization when working at high resolutions.

3. A Framework for 3D Density Estimation

Here we present our framework for density estimation
which includes a probabilistic generative model of image
formation, stochastic optimization to cope with large-scale
datasets, and importance sampling to ef�ciently marginalize
over the unknown 3D pose of the particle in each image.

3.1. Image Formation Model

In Cryo-EM, particle images are formed as orthographic,
integral projections of the electron density of a molecule,
V 2 RD 3

. In each image, the density is oriented in an un-
known pose,R 2 SO(3), relative to the direction of the
microscope beam. The projection along this unknown di-
rection is a linear operator, which is represented by the ma-
trix P R 2 RD 2 � D 3

. Along with pose, the in-plane transla-
tion t 2 R2 of each particle image is unknown, the effect of
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overR2. The accuracy of the quadrature scheme, and con-
sequently the values ofM R andM t , are set automatically
based on! , the speci�ed maximum frequency such that
higher values of! results in more quadrature points.

Given a set ofK images with CTF parametersD =
f (I i ; � i )gK

i =1 and assuming conditional independence of the
images, the posterior probability of a densityV is

p(VjD) / p(V)
KY
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p( ~I i j� i ; ~V) (5)

wherep(V) is a prior over 3D molecular electron densities.
Several choices of prior are explored below, but we found
that a simple independent exponential prior worked well.
Speci�cally, p(V) =

Q D 3

i =1 �e � � V i whereVi is the value
of thei th voxel and� is the inverse scale parameter. Other
choices of prior are possible and is a promising direction for
future research.

Estimating the density now corresponds to �ndingV
which maximizes Equation (5). Taking the negative log
and dropping constant factors, the optimization problem be-
comesarg minV2 RD 3

+
f (V),

f (V) = � logp(V) �
KX

i =1

logp( ~I i j� i ; ~V) (6)

whereV is restricted to be positive (negative density is phys-
ically unrealistic). Optimizing Eq. (6) directly is costly due
to the marginalization in Eq. (4) as well as the large num-
ber (K ) of particle images in a typical dataset. To deal with
these challenges, the following sections propose the use of
two techniques, namely, stochastic optimization and impor-
tance sampling.

3.2. Stochastic Optimization

In order to ef�ciently cope with the large number of
particle images in a typical dataset, we propose the use
of stochastic optimization methods. Stochastic optimiza-
tion methods exploit the large amount of redundancy in
most datasets by only considering subsets of data (i.e., im-
ages) at each iteration by rewriting the objective asf (V) =P

k f k (V) where eachf k (V) evaluates a subset of data.
This allows for fast progress to be made before a batch op-
timization algorithm would be able to take a single step.

There are a wide range of such methods, ranging from
simple stochastic gradient descent with momentum [28, 29,

36] to more complex methods such as Natural Gradient
methods [2, 3, 19, 20] and Hessian-free optimization [26].
Here we propose the use of Stochastic Average Gradient
Descent (SAGD) [21] which has several important advan-
tages. First, it is effectively self-tuning, using a line-search
to determine and adapt the learning rate. This is particu-
larly important, as many methods require signi�cant man-
ual tuning for new objective functions and, potentially, each
new dataset. Further, it is speci�cally designed for the �nite
dataset case allowing for faster convergence.

At each iteration� , SAGD [21] considers only a single
subset of data,k� , which de�nes part of the objective func-
tion f k � (V) and its gradientgk � (V). The densityV is then
updated as

V� +1 = V� �
�

KL

KX

j =1

dV�
j (7)

where� is a base learning rate,L is a Lipschitz constant of
gk (V), and

dV�
k =

(
gk (V� ) k = k�

dV� � 1
k otherwise

(8)

is the most recent gradient evaluation of datapointj at it-
eration� . This step can be computed ef�ciently by stor-
ing the gradient of each observation and updating a run-
ning sum each time a new gradient is seen. The Lipschitz
constantL is not generally known but can be estimated us-
ing a line-search technique. Theoretically, convergence oc-
curs for values of� � 1

16 [21], however in practice larger
values at early iterations can be bene�cial, thus we use
� = max( 1

16 ; 21�b �= 150c). To allow parallelization and re-
duce the memory requires of SAGD, the data is divided into
minibatches of 200 particles images. Finally, to enforce the
positivity of density, negative values ofV are truncated to
zero after each iteration. More details of the stochastic op-
timization can be found in the Supplemental Material.

3.3. Importance Sampling

While stochastic optimization allows us to scale to large
datasets, the cost of computing the required gradient for
each image remains high due to the marginalization over
orientations and shifts. Intuitively, one could consider ran-
domly selecting a subset of the terms in Eq. (4) and using
this as an approximation. This idea is formalized by impor-
tance sampling (IS) which allows for an ef�cient and accu-
rate approximation of the discrete sums in Eq. (4).1 A full
review of importance sampling is beyond the scope of this
paper but we refer readers to [38].

1One can also apply importance sampling directly to the continuous
integrals in Eq. (3) but it can be computationally advantageous to precom-
pute a �xed set of projection and shift matrices,~P R and~St , which can be
reused across particle images.
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