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Abstract

We present a minimal, non-iterative solution to the absolute

pose problem for images from rolling shutter cameras. Ab-

solute pose problem is a key problem in computer vision and

rolling shutter is present in a vast majority of today’s digital

cameras. We propose several rolling shutter camera models

and verify their feasibility for a polynomial solver. A solu-

tion based on linearized camera model is chosen and veri-

fied in several experiments. We use a linear approximation

to the camera orientation, which is meaningful only around

the identity rotation. We show that the standard P3P algo-

rithm is able to estimate camera orientation within 6 de-

grees for camera rotation velocity as high as 30deg/frame.

Therefore we can use the standard P3P algorithm to esti-

mate camera orientation and to bring the camera rotation

matrix close to the identity. Using this solution, camera po-

sition, orientation, translational velocity and angular veloc-

ity can be computed using six 2D-to-3D correspondences,

with orientation error under half a degree and relative po-

sition error under 2%. A significant improvement in terms

of the number of inliers in RANSAC is demonstrated.

1. Introduction

Perspective-n-point problem (PnP) for calibrated cameras

is the task of finding a camera orientation and translation

from n 2D-to-3D correspondences. It is a key problem in

many computer vision applications such as structure from

motion, camera localization, object localization and visual

odometry. PnP has been thoroughly studied in the past with

first solution being published in 1841 by Grunert and later

reviewed in [5]. The PnP problem for calibrated cameras

can be formulated as a system of simple polynomial equa-

tions and solved from three points in a closed form. Many

authors focused on different formulations of the problem,

comparing numerical stability, speed or methods how to

Figure 1: Result of a standard P3P and our R6P algorithm applied

on image with rolling shutter distortion. All tentative 2D-3D cor-

respondences are shown in black, inliers found by P3P are red and

inliers found by R6P are in green squares. Notice that R6P found

many more matches than P3P.

calculate the camera pose from more than three correspon-

dences [2, 4, 14, 17, 18, 23, 24, 25].

In general, existing methods for calculating PnP can be

divided based on two criteria. They use either (1) a mini-

mal number of 2D-to-3D correspondences, usually within a

RANSAC paradigm to improve robustness, or (2) use more

than minimal number of measurement to simplify the equa-

tions. Another division can be made between iterative algo-

rithms and non-iterative algorithms, where the former usu-

ally requires some approximate solution to begin with.

Previously mentioned methods assume a perspective

camera model which is a model physically valid for cameras

with a global shutter. However, CMOS sensors that are used

in vast majority of todays consumer cameras, smartphones

etc. use the rolling shutter (RS) mechanism [16] to capture

images. The key difference is that with the global shutter,

the entire image is exposed to the light at once, whereas

when using the RS the individual image rows (or columns)

are captured at different times. When a RS camera moves

while capturing the image, several types of distortion such

as smear, skew or wobble appear. A perspective camera



model is no longer valid in this case and that can be a prob-

lem when using methods that assume this model.

Recent works have shown that RS is an important ef-

fect that should be considered in image rectification [10,

19], structure from motion [1, 8, 7] and multiple view

stereo [20]. Those works have shown that existing meth-

ods can perform poorly on RS data or even fail completely

and that incorporating some sort of RS camera model can

solve these issues.

In [1] authors tackled the problem of RS absolute pose

using a non-linear optimization with the initial guess ob-

tained by a linear method using 81/2 points and assuming a

planar scene. We present the first minimal solution to the

RS absolute pose problem from 6 points only which works

for non-planar scenes.

Another non-linear optimization method presented in [7]

is suited for video sequences, where camera poses are com-

puted sequentially taking the previous camera pose as an

initial guess. In [11], the authors compensated for the RS

effect prior to the optimization using estimated camera mo-

tion parameters from subsequent video frames. Our solu-

tion works for single images exactly as P3P for perspective

cameras.

A globally optimal solution using polynomial equations

and Gloptipoly [9] solver to solve rolling shutter PnP is

shown in [15]. Authors show that the method is capable

of providing better results than [1] with the use of seven

or more point correspondences. Run time of this approach,

which uses Gloptipoly solver, is at least 100 times longer

than 1.7ms which we need and therefore [15] it is not a

feasible solution for a RANSAC loop. When using more

points, this approach is heavily sensitive to mismatches.

1.1. Motivation

Important thing to realize is that the rolling shutter effect

is present even in still images, not only video sequences.

It is therefore desired to have a R6P method that works on

still images that could be used for structure from motion,

camera or object localization in cases we don’t have a video

sequence or are simply limited in computing resources to

process every frame of a video. An example could be an un-

manned aerial vehicle equipped with a camera for on-board

localization or doing a large scale structure from motion re-

construction from a camera mounted on a car.

Contribution. The contribution of this paper is threefold.

First, we present the first non-iterative minimal solution to

the rolling shutter absolute pose (RnP) problem which im-

proves the precision of camera pose estimates of a standard

P3P solution and works on still images as well as video

sequences. Second, the feasibility of several different RS

camera models is analysed. Third, interesting experimental

observations are made showing the benefits and limits of a

linearized RS camera model and a standard P3P model on a

rolling shutter data.

We investigate several rolling shutter camera models in

section 3, discuss and verify their feasibility for a minimal

solution to the RS abolute pose problem. In section 4 we

describe how to prepare the equations of the model to be

solved by a polynomial solver. Section 5 presents a method

how to keep the data close to the linearization point where

the selected RS camera model works well. The resulting RS

P6P solver is verified and its properties analyzed in detail in

section 6.

2. Absolute pose with rolling shutter

The computation of absolute camera pose using 2D and 3D

point correspondences (PnP) under the rolling shutter effect

brings new challenges. Standard PnP for perspective cam-

eras uses the projection function

λixi = RXi + C (1)

where R and C is the rotation and translation bringing a 3D

point Xi from world coordinate system to the camera coor-

dinate system with xi = [ri, ci, 1]
⊤

, and scalar λi ∈ R.

When the camera is moving during the image capture, ev-

ery image row will be captured at different time and hence

different positions. R and C will therefore be functions of

the image row ri being captured.

λixi =





ri
ci
1



 = R(ri)Xi + C(ri) (2)

Next, we will describe functions R(ri) and C(ri).

3. Rolling shutter camera models

In this section we will consider several rolling shutter

camera models and investigate their applicability for the

PnP problem.

3.1. SLERP model

To accomodate for camera rotation during frame capture we

could interpolate between two orientations. A very popular

method how to interpolate rotations is SLERP [21], which

was used in [7]. It works with quaternions and the formula

to interpolate between two rotations represented by q0 and

q1

SLERP (q0, q1, t) = q0
sin (Ω− tΩ)

sinΩ
− q1

sin tΩ

sinΩ
(3)

where Ω = arccos
(

q0
⊤q1

)

. It is a linear interpolation

on the sphere of quaternions, which in practice means that

there will be a constant angular velocity. This is a nice prop-

erty, which could even hold true in some special cases in re-

ality (e.g. a camera mounted on a rotating platform or a car,



which is turning with constant angular velocity). However,

the presence of sine and cosine prevents us from using this

model directly in a polynomial solver. We could substitute

the sine and cosine with new variables and obtain a polyno-

mial equations but that leads to high order polynomials and

too complicated computations to get a fast solver. More-

over, with the increasing number of variables the solution

becomes numerically unstable.

3.2. Cayley transform model

Another way how to represent rotations is the Cayley trans-

form [6]. For any vector a = [x, y, z]
⊤

∈ R
3 there is a

map

R(a)=
1

K

[

1+x
2−y

2−z
2

2xy−2z 2y+2xz

2z+2xy 1−x
2
+y

2−z
2

2yz−2x

2xz−2y 2x+2yz 1−x
2−y

2
+z

2

]

(4)

where K = 1 + x2 + y2 + z2 which produces the rotation

matrix corresponding to the quaternion w + ix + jy + kz
normalized so that w = 1. The vector a is a unit vector

of the axis of rotation scaled by tan θ/2. Therefore, 180

degree rotations are prohibited. We can prescribe (2) such

that R is a combination using Cayley transform as

λi





ri
ci
1



 = R(riw)R(v)Xi + C+ rit (5)

to represent the camera initial orientation by v and the

change of orientation during frame capture by riw. This

represents a rotation around the axis w which is close to uni-

form in angular velocity around ri = 0. Equation (5) is a ra-

tional polynomial and we must multiply it by 1+x2+y2+z2

to get a pure polynomial for the polynomial solver. We

obtain a system of polynomial equations of degree five in

18 (3+3+3+3+6 for C,v,t,w and λ1 . . . λ6 respectively) vari-

ables which contains 408 monomials. Such a system is dif-

ficult to solve and the Gröbner basis solution for this sys-

tem involves eliminating a 8000x8000 matrix, which is time

consuming and numerically not very stable. Due to these

reasons we will not consider this model as feasible for our

purposes.

3.3. Linearized model

To reduce the degree of the polynomials and the number of

monomials we can use a linearization of a rotation matrices.

We will linearize around the initial rotation R(v) using the

first order Taylor expansion such that

λi





ri
ci
1



 = (I+ (ri − r0)[w]x) R(v)Xi+C+(ri−r0)t (6)

where [w]x is the skew-symmetric matrix

[w]x =





0 −w3 w2

w3 0 −w1

−w2 w1 0



 (7)

Such function model, with the rolling shutter rotation lin-

earized, was used in [15]. This function will deviate from

the reality with increasing rolling shutter effect. However,

we have observed that this model is usually sufficient for

the amount of rolling shutter rotation present in real situa-

tions. We now have a system of degree three polynomials in

18 variables with 64 monomials. Unfortunately, we again

found this system to be too complicated to be efficiently

solved and used in RANSAC based estimation.

3.4. Double linearized model

Let us simplify the model even further by linearizing also

the initial rotation. We obtain

λi





ri
ci
1



=(I+(ri−r0)[w]x)(I+[v]x)Xi+C+(ri−r0)t (8)

which are simpler polynomial equations of degree two and

28 monomials. The model has an obvious drawback and

that is, unlike w representing the rolling shutter motion and

being presumably small, v can be arbitrary. Therefore, the

model’s accuracy would depend on the initial orientation of

the camera in the world frame. A possible solution is to

force v to be close to zero and we propose a way how to do

this in section 5 . In section 4 we will show how to modify

(8) to make the computation more efficient.

4. R6P for RANSAC

In previous section we presented several rolling shutter

camera models and in this section we show how to use the

double linearized model in a RANSAC environment.

4.1. Solving the equations

To solve the polynomial equations of the double linearized

model (8), we used the Gröbner basis method [3]. This

method for solving systems of polynomial equations has

been recently used to create very fast, efficient and numeri-

cally stable solvers to many difficult problems. The method

is based on polynomial ideal theory and special bases of

the ideals called Gröbner bases [3]. To create an efficient

Gröbner basis solver for the absolute pose rolling shutter

problem we used the automatic generator of Gröbner basis

solvers [13].

The minimal number of 2D-to-3D point correspon-

dences necessary to solve the absolute pose rolling shutter

problem is six. For six point correspondence, the double

linearized model (8) results in quite a complex system of



3× 6 = 18 equations in 18 unknowns. Such a system is not

easy to solve for the Gröbner basis method and therefore it

has to be simplified.

To simplify the input system (8) we first eliminate the

scalar values λi by multiplying all equations (8) from the

left by the skew symmetric matrix





0 −1 ci
1 0 −ri

−ci ri 0



 . (9)

This leads to 18 equations, from which only 12 are linearly

independent, in 22 monomials and 12 unknowns, i.e., the

rotation parameters w, v and the translation parameters C

and t.

The 12 linearly independent equations are linear in the

unknown translation parameters C and t. Therefore, the

translation parameters C and t can be easily eliminated from

these equations. This can be done either by performing

Gauss-Jordan (G-J) elimination of a matrix representing the

12 linearly independent equations or by expressing the six

translation parameters as functions of the rotation param-

eters w and v and substituting these expressions to the re-

maining six equations.

After the simplification we obtain a final system of six

equations in six unknowns and 16 monomials. This system

has 20 solutions. The Gröbner basis solver of the proposed

R6P rolling shutter problem starts with these six equations

in six unknowns, i.e., the rotation parameters w, v.

From the automatic generator [13], we obtained an elim-

ination template which encodes how to multiply these six

input polynomial equations by the monomials and then how

to eliminate the polynomials using G-J elimination to obtain

all polynomials necessary for solving the problem.

To get the elimination template, the automatic genera-

tor first generated all monomial multiples of the initial six

equations up to the total degree of five. This resulted in

504 polynomials in 462 monomials. Then the generator re-

moved all unnecessary polynomials and monomials. This

resulted in a final 196 × 216 elimination template matrix.

Note that this elimination template matrix needs to be found

only once in the preprocessing phase.

The final solver for the P6P rolling shutter problem then

only performs one G-J elimination of the 196 × 216 elim-

ination template matrix. This matrix contains coefficients

which arise from specific measurements, i.e., six 2D-to-

3D point correspondences. Then the solutions to the rota-

tion parameters are found from the eigenvectors of a special

20 × 20 multiplication matrix created from the rows of the

eliminated template matrix. This gives us a set of up to 20

real solutions to w and v. By substituting these solutions to

the equations (8) we obtain solutions to C and t.

Usually only one of these 20 solutions is geometrically

feasible, i.e., is real and of a reasonable values of parame-

ters. Specifically, if we consider only reasonable values of

the rolling shutter angular velocity w we can eliminate many

solutions that are not feasible. Authors of [15] used the

same linearization for w and showed that when ||w|| > 0.05
the model loses its accuracy. We decided to discard solu-

tions with ||w|| > 0.2 which corresponds to angular veloc-

ity of approximately 11deg/s. Solutions beyond this tresh-

old are not interesting, since they are far from the lineariza-

tion point. In our experiments, this criterion successfully

eliminated 90-95% of solutions to be verified by RANSAC,

which speeded up the process significantly by avoiding lots

of work in model verification.

The final R6P solver takes about 1.7 ms in MATLAB on

a 3.2 GHz i7 CPU. An improvement can be expected using

C++. Moreover, the 196× 216 elimination template matrix

used in this R6P Gröbner basis solver is quite sparse and

therefore the final solver can be even speeded up using the

recently published SBBD method for speeding-up Gröbner

basis solvers [12]. The expected speed up of the G-J elimi-

nation part of the solver, which now takes 0.9ms, is 3×-5×.

5. Getting close to the linearization point

As mentioned in section 3, the double linearized model will

only be a good approximation when close to the lineariza-

tion point. That is the case when R is close to I. We can

enforce this condition if we have an approximation Ra to R.

Then we can transform the 3D points as

X̂i = RaXi i = 1, . . . , 6 (10)

and replace Xi in (8) by X̂i. Such solution Rl should then

be close to I and we can obtain R as RlRa. To get such

approximation we can use for example an inertial sensor

which is often present in cellphones, cameras or on-board

a robot or UAV. However, we don’t want to limit ourselves

to having additional sensor information so we propose to

obtain Ra using a standard P3P algorithm [5]. We will show

in the experiments to which limits this approach works and

that it can indeed provide a sufficient approximation for our

solver to work well.

Notice that this approach requires only an approximation

to camera orientation not the camera position.

6. Experiments

We conducted several experiments on synthetic as well as

real datasets. The synthetic experiments were aimed at ana-

lyzing the properties of the double linearized rolling shutter

camera model, which brings an interesting insight on how

the solver will behave under different conditions. On the

real datasets, in the absence of ground truth, we focused on

the number of matches classified as inliers using RANSAC.

This corresponds to a typical application of absolute pose

algorithm, where we want our model to be able to fit as



many matches as possible while avoiding the mismatches.

We compared our R6P only to P3P [4], since to the best of

our knowledge it is the only alternative with the same appli-

cability. It is important to note that [7] can be used only on

video sequences, [1] requires 9 co-planar points and [15]

uses global optimization which is sensitive to mismatches

and due to speed of Gloptipoly too slow for the RANSAC

paradigm.

In the synthetic datasets, a calibrated camera was con-

sidered with field of view of 45 degress. It was randomly

placed in a distance of 〈1; 3.3〉 from the origin, observing

a group of 3D points randomly placed in a cube with side

length 2 centered around the origin. Camera initial orien-

tation was different based on the type of experiment. The

rolling shutter movement was simulated using Cayley pa-

rameterization, because using the double linearized model

for generating data would allow the solver to always find

the exact solution. The image projections were obtained by

solving (5) for r and c. Six points were then randomly cho-

sen from the projections to solve for the camera parameters.

Since the solver can return up to 20 real solutions, the one

closest to the ground truth was always chosen, as it would

be probably chosen in the RANSAC estimation.

The first two experiments focus on varying either of the

two rolling shutter parameters, i.e. the translational and an-

gular velocity. The camera orientation is kept R = I so we

avoid the effect of the initial camera orientation lineariza-

tion. We varied the angular velocity approximately from

0 to 30 degrees per frame. Angular velocity 30 deg/frame

means that the camera moved by 30 degrees between ac-

quiring the first and the last row. The translational velocity

was varied from 0 to 1 which is approximately 50% of the

average distance of the camera center from the 3D points.

The results are shown in Figure 2. As expected, because

the model does not exactly fit the data (as will be the case

in real data), with increasing rolling shutter effect the per-

formance of the solver decreases. However, the results are

very promising since even at higher angular velocities the

solver still delivers fairly precise results. At 30 deg/frame

the mean orientation error is still below half a degree and

the position error is less than half a percent. When varying

the translation velocity only, we found the solver to be giv-

ing exact results up to the numerical precision, which was

expected, since the model fits exactly the data.

In the third experiment we varied both rolling shutter

parameters, i.e. translational and angular velocity to see

the combined effect. Again, the camera orientation is kept

R = I and the same ranges are used for parameter variation

as in first two experiments. The results, see Figure 3, are

similar to those in the first experiment, indicating that the

presence of a constant velocity translational rolling shutter

effect does not affect the results of the solver significantly.

The fourth experiment was focused on finding out how
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Figure 2: Results for varying RS angular velocity without RS

translation.
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Figure 3: Results for varying both RS angular velocity and RS

translation.

well the model behaves around its linearization point, i.e.

when R 6= I. Rolling shutter parameters were uniformly

chosen from values 〈0; 20〉 deg/frame for the angular veloc-

ity and 〈0; 0.2〉 for the translational velocity, which is ap-

proximately ten percent of the average distance of camera

center from the 3D points. Camera orientation was varied

in the interval of 〈0; 33〉 degrees. Results are in figure 4 and

they show that the model is very prone to error when be-

ing far from its linearization point, with the mean camera

orientation error going up to five degrees and mean relative

camera center error approaching 0.4 when the camera is ro-

tated 33 degrees away from the linearization point. C and R

are computed quite accurately, when R is within approx. 10

degrees from I. It suggests that if we can use some standard

non-RS method, such as P3P to find an initial R0 to align the

data, we can then apply our solver to get a more accurate

camera pose. We tested this approach in experiment 7.

In synthetic experiments 5 and 6, we compared our R6P

solver with a standard P3P solver [5] under the same con-

ditions as in experiments 3 and 4, i.e. varying both rolling

shutter parameters and varying camera orientation respec-
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Figure 4: Experiment 4 - varying camera orientation, forcing the

model away from its linearization point.
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Figure 5: Experiment 5 - varying RS parameters (angular and

translational velocity) and comparing our R6P solver (blue)

against standard P3P solver (red). The camera orientation is R = I

and thus at the linearization point of the model.
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Figure 6: Experiment 6 - randomly choosing RS parameters and

increasing the camera orientation angle. Same conditions as in

experiment 4, but here comparing our R6P solver (blue) with stan-

dard P3P solver(red).

tively. The results in figure 5 show that at the lineariza-

tion point, our R6P solver is far superior to the standard

P3P method in estimating both camera position and orien-

tation. Results in figure 6 hint that the linearization is the

key issue in our R6P solver and that around 7 degrees of

distance from R = I our solver is surpassed in precision

of estimating the camera center and at 14 to 17 degrees in

the precision of extimating camera orientation. Note the in-

teresting discrepancy between the error in camera position

and orientation. An interesting thing to notice from these

two experiments is that the global P3P solver is capable of

bringing the camera orientation within six degrees of the

ground truth, even under large RS effect. At that point, if

we apply our solver, the precision should improve signifi-

cantly to values below 0.5 deg. To verify the previous is the
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Figure 7: Experiment 7 - random camera orientation and increas-

ing RS angular and translational velocity. Results after applying

P3P (red) and subsequently applying R6P (blue). Significant im-

provement for both camera position and orientation is made using

P6P after P3P.

purpose of experiment 7. The camera orientation was cho-

sen randomly and the RS parameters were increasing as in

experiments 3 and 5. The results confirm our hypothesis. If

the global P3P, or any other method, is able to compute the

camera orientation within 15 degree error then our solver

improves the solution to an average error below one degree.

Interesting observation is that unlike in experiment 6 here

the precision is significantly better for both camera center

and orientation.

6.1. Real data

For real experiments we used the four datasets from [8]

where an Iphone 4 camera was placed together with a global

shutter Canon camera on a rig. We acquired two other

datasets using similar camera rig, but with a high-speed

global-shutter camera and a Nexus 4 cellphone. Videos

were taken when moving this rig by hand or walking

around. We therefore have for each dataset 2 sets of images

of the same scene. One set is with rolling shutter effect and

one with global shutter.

6.2. Obtaining 2D­3D correspondences

To see the behavior of our method on real data, we needed

to obtain 3D to 2D correspondences for the rolling shutter

images. We decided to do a reconstruction using a stan-

dard SfM pipeline [22] using the global shutter images first.

Then, we matched the rolling shutter images with the global

shutter matches that had a correspondning 3D point in the

global shutter 3D model. That way we obtained the cor-

respondences between 2D rolling shutter features and 3D

global shutter points. It was verified visually that this ap-

proach provided 2D-3D correspondences with a very small

number of mismatches, i.e. a 2D correspondence being

matched to a wrong 3D point. This is probably due to

the fact, that all 3D points have already gone through an

SfM pipeline and only good 3D points which were suc-

cessfully matched in several cameras remained. Still, some

mismatches were present, but according to our experiments,

this number was not higher than 10%.
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Figure 8: Example images of all datasets used.

20 40 60 80
0

1000

2000

3000

seq1

image

n
u

m
 m

a
tc

h
e

s

 

 

matches

GS inliers

RS inliers

10 20 30 40
0

1000

2000

3000

seq20

image

n
u

m
 m

a
tc

h
e

s

 

 

matches

GS inliers

RS inliers

10 20 30 40 50
0

1000

2000

3000

4000

5000

seq22

image

n
u

m
 m

a
tc

h
e

s

 

 

matches

GS inliers

RS inliers

10 20 30 40 50
0

200

400

600

800

1000

seq8

image

n
u

m
 m

a
tc

h
e

s

 

 

matches

GS inliers

RS inliers

20 40 60 80 100 120
0

100

200

300

400

door1

image

n
u

m
 m

a
tc

h
e

s

 

 

matches

GS inliers

RS inliers

10 20 30 40 50 60 70
0

100

200

300

400

door2

image

n
u
m

 m
a
tc

h
e
s

 

 

matches

GS inliers

RS inliers

Figure 9: Experiments on real data. Number of inliers after run-

ning 100 rounds of RANSAC. Number of 2D-3D matches from

global shutter images to rolling shutter images are in black, num-

ber of inliers obtained by P3P are in red and number of inliers

obtained by R6P are in green. The results are averaged over 100

runs to reduce randomness.

6.3. Evaluation

To evaulate our method, we measured the number of in-

liers, i.e. the 2D-3D correspondences in agreement with

the model, after performing RANSAC. This is an impor-

tant measure, since a common use of PnP is to calculate the

camera pose and tentative 3D points for triangulation. The

more points will be classified as inliers the more points will

appear in the reconstruction and will support further cam-

eras.

We applied first the global P3P, transforming the 3D

points and then using our R6P solver as described in section

5. Since our data contained only few mismatches, 100 iter-

ations of RANSAC proved to be enough to obtain a good

camera pose. To reduce randomness of RANSAC results,

we averaged the numbers over 100 successive RANSAC

runs. As it is seen in figure 9, R6P is able to classify more

points as inliers compared to P3P. The difference is signifi-

cant especially when camera moves rapidly and/or the scene

is close to the camera. This result confirms our expectation

that as the camera movement during the capture becomes

larger the need for a rolling shutter model is more signifi-

cant. Datasets seq20, seq8 and door2 contained more cam-

era motion and therefore show a larger gap between results

of P3P and R6P.

A good example is in dataset seq20, where the cam-

era is fairly still in the beginning, then undergoes a rapid

change in orientation (going upwards following the trunk

of a palm tree), stops and then goes down again. The num-

ber of inliers returned by R6P and P3P when the camera is

still is comparable, although higher for R6P since there are

some RS distortions caused by handshake. As soon as the

camera starts moving, the number of inliers for P3P drops

drastically, sometimes even below 10% of the number of

matches. R6P, in contrast, manages to keep the number of

inliers above 90% of the number of matches. That is a huge

difference.

Important observation is, that eventhough P3P fails to

classify more than 80% of the matches as inliers it still pro-

vides a sufficient estimate of the camera orientation for the

R6P to produce much better result. A detailed visualization

of one of the results on seq20 is given in figure 10.

7. Conclusion

In this paper, we addressed the problem of perspective-n-

point for cameras with rolling shutter. We presented four

different models which capture camera translation and ro-

tation during frame capture. Only one of them was found

to be feasible for using a polynomial solver. Using this

model, camera position, orientation, translational velocity

and angular velocity can be computed using six 2D-to-3D

correspondences. This model uses a linear approximation

to the camera orientation and therefore is only meaningful

around unitary camera orientation matrix. We analyzed its

behavior around the linearization point and concluded that

it is only reasonable to use it within approximately ten de-

gree region around the linearization point. We also showed

that standard P3P algorithm is able to estimate the cam-

era orientation with an error under six degrees for camera

movements as high as 30 degrees over image capture time

combined with a translational movement up to 10% of the

camera distance from the object. Using these findings we

proposed to first apply a standard P3P algorithm, transform

the 3D points using the estimated rotation to bring the esti-

mated camera pose close to unitary matrix and then apply

our R6P solver. This approach turned out to work very well

delivering average camera orientation error under half a de-

gree and relative camera position error under 2% even for

large rolling shutter distortions. It was verified to work on

real data, delivering increased number of inliers when using

R6P over P3P in RANSAC. These results suggest that hav-

ing an initial guess on camera orientation, such as from an

inertial measurement unit present in cellphones or UAV’s,

one could use our R6P solver directly.



P3P RSP6P P3P RSP6P

1
7
7
2

2
0
2
3

2
2
0
8

1
3
4

7
1
9

7
8
4

1
8
0
0

1
9
8
0

2
2
1
3

3
2
2

7
6
4

8
1
5

1
7
8
1

1
8
9
3

2
1
3
4

1
7
6
4

1
8
3
0

1
8
9
3

1
4
2
2

1
8
7
4

2
1
2
0

6
6
0

1
7
8
6

1
8
7
4

1
6
0
0

1
7
4
4

1
9
5
8

1
9
5

7
3
2

8
2
0

1
0
0
0

1
8
4
9

2
1
9
6

1
4
8

5
5
3

6
5
5

1
9
6

9
3
8

1
1
1
9

1
2
5

5
3
2

6
2
7

1
3
9

4
6
5

5
6
0

2
0
3

6
0
9

8
7
0

1
3
4

7
1
9

7
8
4

1
2
7

4
1
5

5
7
8

Figure 10: Results on dataset seq20, matched correspondences are in blue, inliers after RANSAC using P3P and R6P are in red and green

respectively. The actual numbers of inliers are displayed on side of each image pair.
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