Causal Video Object Segmentation From Persistence of Occlusions

Brian Taylor, Vasiliy Karasev, Stefano Soatto; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 4268-4276

Abstract


Occlusion relations inform the partition of the image domain into ``objects'' but are difficult to determine from a single image or short-baseline video. We show how long-term occlusion relations can be robustly inferred from video, and used within a convex optimization framework to segment the image domain into regions. We highlight the challenges in determining these occluder/occluded relations and ensuring regions remain temporally consistent, propose strategies to overcome them, and introduce an efficient numerical scheme to perform the partition directly on the pixel grid, without the need for superpixelization or other preprocessing steps.

Related Material


[pdf]
[bibtex]
@InProceedings{Taylor_2015_CVPR,
author = {Taylor, Brian and Karasev, Vasiliy and Soatto, Stefano},
title = {Causal Video Object Segmentation From Persistence of Occlusions},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2015}
}