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Video segmentation is to partition the video into several semantically consis-
tent spatio-temporal regions. It is a fundamental computer vision problem
in many applications, such as object tracking, activity recognition, video
analytics, summarization and indexing. However, there exists several re-
maining issues to be addressed. First, most of video segmentation methods
have worse segmentation quality due to only utilizing the low-level features,
which are easily contaminated by video noises and usually not powerful
enough to differentiate the different semantic regions. Second, exploring
the internal video statistics is indispensable to improve the segmentation
performance other than employing a large number of related exemplars,
which is obviously time-consuming and computationally inefficient. Third,
a streaming setting for video segmentation must take into account temporal
long-range relationships between voxels.

Motivated by the advances in subspace clustering [4], especially the
Low-Rank Representation (LRR) methods for image segmentation [1, 3],
we propose a Sub-Optimal Low-rank Decomposition (SOLD) algorithm,
which pursues the low-rank representation for efficient video segmentation.
Instead of using superpixels in previous works like [2], we take supervox-
els as graph nodes to infer their optimal affinities because they can preserve
local spatio-temporal coherence as well as good boundaries. To seek the
unbiased and task-independent video segmentation solution, we define our
low-rank model based on very generic assumption inspired by [5]. We as-
sume that the intra-class supervoxels are drawn from one identical low-rank
feature subspace, and all supervoxels in a period lie on a union of multi-
ple subspaces, which can be justified by natural statistic and observations
of videos. Based on this assumption, the tractable low-rank representation
model can be formulated as

min
Z,E

1
2
∥X−XZ−E∥2

F +α∥Z∥∗+λ∥E∥1, (1)

where X = [x1,x2, . . . ,xn] ∈Rd×n, denoting the feature matrix of supervox-
els. Z ∈ Rn×n and E ∈ Rd×n are the desired low-rank affinity matrix the
sparse corrupted noises, respectively. The parameters α and λ are balance
factors of three parts.

To enhance the discriminative ability of the low rank affinity matrix, we
further integrate into the model in Eq. 1 the discriminative replication prior
based on internal video statistics: local small-size cubes (e.g., 6 × 6 × 6
voxels) tend to recur frequently within the same semantic spatio-temporal
region, yet less frequently within semantically different spatio-temporal re-
gions. We denote Q ∈ Rn×n as the discriminative replication prior ma-
trix, and larger Qi j indicates that the supervoxel i and j belong to different
semantic spatio-temporal regions with higher probability, and vice versa.
Thus, we incorporate Q into the model in Eq. 1:

min
Z,E

1
2
∥X−XZ−E∥2

F+α∥Z∥∗+λ∥E∥1+γ tr(ZT Q), (2)

where tr(·) returns the matrix trace, and γ is a tuning parameter. To this end,
high-level semantic internal statistics can be incorporated as a soft constraint
to enhance the discriminative ability.

The low rank representation model in Eq. 2 can be solved using the aug-
mented Lagrangian method (ALM) [9] or linearized ALM [7]. However, in
many applications it is easier to explicitly determine the desired rank rather
than implicitly tuning the tradeoff parameter α [6]. Therefore, we remove
the nuclear-norm regularizer in Eq. 2, and explicitly impose the fixed-rank
constraint on Z. Supposing the rank of the affinity matrix Z is r, we have
Z=AB, where A∈Rn×r, B∈Rr×n, and r <min(n,d). By replacing Z with

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

AB, the Sub-Optimal Low-rank Decomposition (SOLD) method is then for-
mulated as,

min
A,B,E

1
2
∥X−XAB−E∥2

F +λ∥E∥1+

β
2
∥AB∥2

F + γ tr((AB)T Q),

(3)

where β is a regularization parameter that controls overfitting. We can fac-
torize Eq. 2 into three sub-problems with closed-form solution, i.e.

A∗ = arg max
A

tr{(AT S1A)−1AT S2ST
2 A},

B∗ = (AT S1A)−1AT S2,

E∗ = arg min
E

λ∥E∥1 +
1
2
∥E− (X−XAB)∥2

F ,

(4)

where S1 = XT X+β I, and S2 = (XT (X−E)− γQ). Even SOLD is non-
convex and sub-optimal, as demonstrated in our experiments, such formula-
tion can deliver both efficient algorithms and promising video segmentation
accuracy. A sub-optimal solution can be obtained by alternating between
the updating of {A, B} and the updating of E, and the details please refer
to the supplementary material. Finally, the low rank affinity matrix of the
supervoxels can be obtained by Z = AB.

An effective streaming algorithm can enable us to process an arbitrary
long video with limited memory and computational resources, and thus is
essential in video segmentation. To this end, we segment the video in over-
lapping sliding windows. Besides, both the temporal consistent constraints
and low rank affinity are considered to improve the longer-range consistency
and segmentation accuracy of the inference algorithm.

We can generate some constraints between neighboring windows to
propagate the segmentation labels, while avoiding some bad results should
not affect the quality of segmentation in the future frames. Thus, we di-
vide the supervoxels into two categories as follows. Given segmentation
labels of the current window, the supervoxels in the next are divided into the
deterministic supervoxels, which completely or almost (over 90% in this pa-
per) belong to one specific label, and non-deterministic supervoxels, which
partly belong to some label. Then the partial grouping supervoxel set is com-
posed by only the deterministic supervoxels. Then, we apply the constrained
NCut method [8] on affinity matrix while incorporating above constraints to
achieve the supervoxel-level segmentation.
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