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Single-image super-resolution is becoming more important with the devel-
opment of high-definition display devices. However, recovering the high-
resolution (HR) details from single low-resolution (LR) image is still chal-
lenging. For example-based methods, the ambiguity of HR/LR patch pairs
is a common problem. We observe that singular structures such as single
edges and corners are more robust to scale change, as pointed out in some
works [3, 7]. In other words they are less ambiguous across different scales.
Meanwhile, most methods work better on singular structures. This inspires
us to decompose the non-singular structures to single ones. We also exploit
the approach of [9] to make the dictionary deformable and more expressive.

This paper proposes a novel deformable compositional model for single-
image super-resolution. Both the patch in the LR input image and the dic-
tionary patch are decomposed to singular structures by using masks. For
each input LR patch containing a singular structure, its best match in the
dictionary is deformed to recover the gradient field. Finally the HR gradient
information is integrated into the LR input image.

We start from patches centered at the gradient ridge points instead of
following the raster-scan strategy. A gradient ridge point is the local max-
imum along the gradient descending path. For each gradient ridge position
p = (x,y), we first extract the patches centering at (x,y) by RRRp and integrate
it with the mask Mp,Z . Given the LR dictionary Dl and the LR gradient
dictionary Dgl = (Dxl ,Dyl), we choose the best element from the corre-
sponding HR dictionary Dh by function δδδ . After the deformation φ and
the contrast adjustment by ηp, RRR>p maps the patch back to the position p
within the reconstructed image. ∑p∈Z RRR>p M>p,Xl

Mp,Xl RRRp counts the masks
accumulated on each pixel. In other words, our method averages all the
overlapping masked dictionary elements. The predicted HR gradient ∇X̃h is
reconstructed as the following equation:

∇X̃h =
∑p∈Z RRR>p M>p,Z ·ηp ·φ(Dhδδδ (Dgl ,Mp,ZRRRp∇Xl))

∑p∈Z RRR>p M>p,ZMp,ZRRRp
(1)

The symbols are the following:
Z: the gradient ridges of the entire image i.e. the local maximum along

the gradient direction (See Section 3.2).
RRRp: patch extraction operator that extracts a patch centered at the posi-

tion p = (x,y).
RRR>p : the inverse operation of RRRp that maps the patch to the position p of

the constructed image.
Mp,Z : the patch mask generated from the gradient ridge point, centered

at p (See Section 3.2).
δδδ : the indicative function that chooses the best match between the input

LR patch and LR gradient dictionary (See Section 3.3 and 3.4).
φ : the deformation function elaborated in Section 3.5.
ηp: the gradient contrast adjustment ratio between the LR patch and

corresponding HR patch with the form ηp = αVar(Mp,ZRRRp|∇Xl |), where
|∇Xl | denotes the gradient magnitude. By the global parameter α , ηp we
adjust the contrast of the normalized output of the patch deformation stage.
The setting of the global parameter α is discussed in the experiments.

Dl and Dh: the LR and HR dictionary respectively. Note that we use
masked patches in Eqn. (1), even though we only display the raw gradient
dictionary elements and the masks separately in Figure 1.

After the estimated image gradient ∇X̃h is obtained (∇xX̃h and ∇yX̃h are
processed separately), we impose the integrated gradient prior ∇X̃h on the
given LR image Xl to recover the HR details. The same strategy is employed
by the work [4] The following energy function is minimized by enforcing
the constraint in both intensity domain and gradient domain:

E(Xh|Xl ,∇X̃h) = ||SHXh−Xl ||2 +β ||∇Xh−∇X̃h||2, (2)
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Figure 1: Flowchart of the proposed method

where S is a down-sampling operator, H is a blurring operator. β is a pa-
rameter that balances the constraints between the intensity domain and the
gradient domain. The global minimum can be obtained by gradient decent:

X t+1
h = X t

h− τ[(H>S>SHXh−H>S>Xl)−β (div(∇Xh)−div(∇X̃h))] (3)

where t is the iteration number and τ is the iteration step. div(∇Xh) denotes
the divergence of ∇Xh via the form div(∇Xh) = ∂ 2Xh/∂x2 + ∂ 2Xh/∂y2,
which can be implemented easily using the Laplace operator.

Our performance evaluation is based on the image test Set 5 and Set 14.
These images are also the main test sets in the literature [2, 5, 8]. Average
PSNR/SSIM performance on luminance channel are evaluated as Table 1:

Table 1: Average performance in PSNR and SSIM on the Set 5 and 14 (3×)
Average SCSR[6] DPSR[9] SRCNN[2] DNC[1] Proposed
PSNR 29.63 29.70 29.86 29.92 30.07
SSIM 0.8899 0.8908 0.8901 0.8927 0.8952

In this paper, we propose a Deformable Gradient Compositional model
to represent the non-singular structures as compositions of single ones, each
of which is allowed some deformation. In our future work we plan to address
the decomposition problem for the joint edges or T-junctions which is not
explicitly handled in our work.
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