
Joint Tracking and Segmentation of Multiple Targets

Anton Milan1, Laura Leal-Taixé2, Konrad Schindler2, Ian Reid1

1University of Adelaide, Australia. 2Photogrammetry and Remote Sensing Group, ETH Zürich.

Figure 1: Qualitative tracking and segmentation results.

Tracking-by-detection traditionally relies on a set of sparse detections that
serve as input to a high-level tracker whose goal is to correctly associate
these “dots” over time. An obvious shortcoming of this approach is that
most information available in image sequences is simply ignored by thresh-
olding weak detection responses and applying non-maximum suppression.
We argue that it is beneficial to consider all image evidence to handle track-
ing in crowded scenarios. In contrast to many previous approaches, we aim
to assign a unique target ID not only to each individual detection, but to ev-
ery (super-)pixel in the entire video (cf. Fig. 1). This low-level information
enables us to recover trajectories of largely occluded targets since the par-
tial image evidence of the superpixels often persists even in the absence of
detections. Exploiting low-level information in the context of multi-target
tracking has been recently proposed [2, 3]. However, one major limitation
of previous approaches is their inherent inability to track targets through full
occlusions. In addition, a target’s state (i.e. its location) is only defined im-
plicitly by the segmentation [2], which makes it rather difficult to estimate
the full extent in case of (partial) occlusion. Our experiments confirm that
these methods show relatively poor performance in crowded scenes when
evaluated with standard multi-target tracking measures. This work over-
comes both limitations by explicitly modelling the continuous state of all
targets throughout the entire sequence.

In common with some other approaches [5–7] we formulate the prob-
lem as one of finding a set of continuous trajectory hypotheses that best
explains the data, but our approach differs in that we take account of the
low-level information in scoring the trajectory hypotheses. We do this by
modelling the problem as a multi-label conditional random field (CRF). Fur-
thermore, contrary to prior closely related work [1, 6], our trajectory model
is not a simple space-time curve but rather a volumetric tube with a rectangu-
lar cross-section, allowing for a more accurate representation. Our method
shows encouraging results on many standard benchmark sequences and sig-
nificantly outperforms state-of-the-art tracking-by-detection approaches in
crowded scenes with long-term partial occlusions.

Our high-level approach to this problem follows a model selection strat-
egy, similar to [1]: we generate an overcomplete set of trajectory hypotheses
and then optimize an objective that chooses which hypotheses participate in
the solution. This objective must capture agreement with image evidence
along with our prior beliefs about the properties of valid trajectories such as
their continuity, dynamics, etc. We formulate the assignment of detections
and (super)-pixels to trajectory hypotheses as a multi-label conditional ran-
dom field (CRF) with nodes V =VS ∪ VD and edges E , where VS represents
all superpixel nodes and VD all detection nodes (see Fig. 2). Each random
variable v ∈ V can take on a label from the label set L = {1, . . . ,N,∅},
which can be either a unique target ID or the background (false alarm) label
∅. We aim to find the most probable labelling v∗ for all nodes given the
observations, which is equivalent to minimizing the corresponding Gibbs
energy: v∗ = argminv E(V). We define the energy as follows:

E(V) = ∑
d∈VD

φ
VD(d)+ ∑

s∈VS

φ
VS(s)+ ∑

(v,w)∈E
ψ(v,w)+ψ

λ , (1)
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Figure 2: Our CRF model for two consecutive frames, showing superpixel
nodes VS, detection nodes ∈ VD and only a subset of the pairwise edges E .

with unaries φVD and φVS , pairwise potentials ψ , and a regulariser ψλ . De-
tection unaries model the overlap between a detection bounding box and a
trajectory hypothesis T . Superpixel unaries capture the colour consistency
between a superpixel and a foreground model, as well as the motion consis-
tency w.r.t. a trajectory hypothesis.

The MDL term ψλ restricts the number of trajectories from growing
arbitrarily high. Because the number of targets is typically unknown, it is
necessary to include this regulariser that favours solutions with fewer labels.
In our formulation, this global factor also acts as a trajectory-specific prior,
capturing target dynamics, the hypothesis shape and size, track persistence,
and the foreground likelihood covered by a hypothesis. By involving the
pixel information in the optimization we enable the label IDs to persist even
when there is no explicit detector evidence. Tab. 1 shows results of our
approach compared to two top public submissions on the recent MOTChal-
lenge benchmark. Further model details and more experiments can be found
in the paper.

Our conclusion is that exploiting all image information helps to improve
multiple target tracking in regions of long-term partial occlusions. More-
over, our joint tracking and segmentation framework provides reasonable
instance-based segmentation masks in crowded scenarios.

Table 1: Results on the MOTChallenge 2015 Benchmark.

Method TA TP Rcll Prcn MT ML ID FM
RMOT [8] 18.6 69.6 40.0 66.4 5.3 53.3 684 1282
CEM [6] 19.3 70.7 43.7 65.4 8.5 46.5 813 1023
MotiCon [4] 23.1 70.9 41.7 71.1 4.7 52.0 1018 1061
SegTrack 22.5 71.7 36.5 74.0 5.8 63.9 697 737
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