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Figure 1: CMU house dataset: Our algorithms are denoted by BCAGM,
BCAGM+IPFP, BCAGM+MP. (Best viewed in color.)

Graph resp. hypergraph matching has been used in a variety of problems
in computer vision, especially in feature correspondence problems. While
graph matching [1, 4] is limited to pairwise geometric relations, hypergraph
matching [2, 3] can integrate better geometric information by taking into
account the higher order relation between groups of points. Thus, they cope
better with geometric transformation such as scaling and other forms of
noise. In this paper, we present a new algorithmic framework for solving
a third order hypergraph matching problem, where higher order geometric
features are used.

Given two sets of feature points V and V ′ with n1 = |V | ≤ n2 = |V ′|, a
third order hypergraph matching problem is formulated as

max
x∈M

S3(x) :=
n

∑
i, j,k=1

F3
i jk xi x j xk. (1)

where x ∈ Rn1n2 is a vectorized version of an assignment matrix X which
belongs to the set M =

{
X ∈ {0,1}n1×n2

∣∣ ∑
n1
i=1 Xi j ≤ 1, ∑

n2
j=1 Xi j = 1

}
.

By abuse of notation, we write x ∈ M to denote X ∈ M. Each entry F3
i jk

of the third order symmetric tensor F3 roughly represents the geometric re-
lation between three correspondences encoded in {i, j,k}. While previous
work tackle this NP-hard polynomial optimization problem by relaxing the
discrete constraint set M to continuous domain, we propose in this paper to
directly handle the original constraint set. This is motivated by the result
of previous work [1, 3, 4] which have shown the importance of one-to-one
constraints in graph/hypergraph matching performance. Our main idea is to
optimize instead of the original score function the multilinear form associ-
ated to it.

Multilinear Form. The multilinear form Fm : Rn× . . .×Rn→ R associ-
ated to an m-th order tensor Fm is given by:

Fm(x1, . . . ,xm) =
n

∑
i1,...,im

Fm
i1...im x1

i1 . . .x
m
im ,

and the score function Sm : Rn→ R is defined by Sm(x) := Fm(x, . . . ,x).
We show below the main steps and contributions of our paper:

1. We lift the original third order tensor F3 to a fourth order tensor F4

and show that the third and fourth order problems are equivalent,

F4
i jkl = F3

i jk +F3
i jl +F3

ikl +F3
jkl . (2)

This lift is important as it allows us to connect the optimization of
a score function with the optimization of its associated multilinear
form. In particular, if S4 is convex then it holds for all x,y,z, t ∈ Rn,
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(a) Input: 10 pts vs 30 pts (b) MPM 4/10 (15.63) (c) TM 5/10 (18.37)

(d) RRWHM 7/10 (26.36) (e) BCAGM 10/10 (43.09) (f) BCAGM+MP 10/10 (43.09)

Figure 2: CMU house dataset: Blue dots indicate outlier points. Red lines
indicate incorrect matches. The matching accuracy (matching score) is re-
ported for each method. (Best viewed in color.)

(a) 34 pts vs 44 pts, 10 outliers (b) TM 10/34 (1714.99)

(c) HGM 9/34 (614.73) (d) RRWHM 28/34 (5230.52)

(e) BCAGM 28/34 (5298.77) (f) BCAGM+MP 34/34 (5377.27)

Figure 3: Car dataset: The number of correct matches and the objective
score are reported. (Best viewed in color.)

(a) F4(x,x,y,y)≤ max
u∈{x,y}

F4(u,u,u,u).

(b) F4(x,y,z, t)≤ max
u∈{x,y,z,t}

F4(u,u,u,u).

2. Given S4 is convex, we prove that the optimization of the multilinear
form F4(x,y,z, t) is always equivalent to the optimization of the score
function S4(x). In particular, it holds for any compact set D⊂Rn that

max
x∈D

F4(x,x,x,x) = max
x,y∈D

F4(x,x,y,y) = max
x,y,z,t∈D

F4(x,y,z, t) (3)

3. If S4 is not convex, we provide a way to make it convex where the
modification is constant on the set of assignment matrices M and
extend this modification to a fourth order multilinear form.

4. In the algorithms, we optimize the multilinear form F4 in a block
coordinate ascent style leading to monotonic ascent directly on the
set of assignment matrices M.

5. Our algorithms beat all state-of-the-art methods for third order (but
also second order) graph matching in extensive experiments. Figure 1
and Figure 2 show some matching results on the CMU house dataset.

6. Our algorithms have competitive running time to all other methods.
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