
Approximate Nearest Neighbor Fields in Video

Nir Ben-Zrihem, Lihi Zelnik-Manor
Department of Electrical Engineering, Technion, Israel.

The Approximate Nearest Neighbor (ANN) problem could be defined as
follows: given a set of reference points and incoming query points, quickly
report the reference point closest to each query. Approximate solutions per-
form the task fast, but do not guarantee the exact nearest neighbor will be
found. When the set of queries consists of all patches of an image the result
is an ANN-Field (ANNF). Several excellent solutions have been developed
for computing ANNF between a pair of images [1, 2, 4, 5, 6, 7]. It is thus
not surprising that ANNF methods have become very popular and now lie
in the heart of many computer vision applications, e.g., texture synthesis,
image denoising, super-resolution, and image editing to name a few.

In this paper we present an efficient ANNF algorithm for video. The
problem setup we address is matching all patches of a video to a set of
reference patches, in real-time, as illustrated in Figure 1. In our formulation
the reference set is fixed for the entire video. In fact, we could use the same
reference set for different videos. Additionally, our reference set of patches
is not restricted to originate from a single image or a video frame, as is
commonly assumed for image ANNF. Instead, it consists of a non-ordered
collection of patches, e.g., a dictionary [3]. This setup enables real-time
computation of the ANN Fields for video. We show empirically, that it does
not harm accuracy.

Our algorithm is designed to achieve low run-time by relying on two
key ideas. First, we leverage the fact that the reference set is fixed, and
hence moderate pre-processing is acceptable. At pre-processing we con-
struct a data structure of the reference set, that enables efficient indexing
during run-time. Second, we rely on temporal-coherency to adapt our hash-
ing functions to the data. The hashing we use is not fixed a-priori as in
previous works [1, 2, 4, 5, 6, 7], but rather it is tuned per query patch dur-
ing runtime. In regions with high temporal change the hashing is tuned to
be coarse, which leads to higher computation times (larger bins translate to
checking out more candidate matches). On the contrary, in regions with low
change, the hashing is finer and hence the computation time is lower. We
refer to this approach as “query-sensitive hashing”. Our hashing is generic
to any distance metric.

Figure 2 provides a visualization of our hashing approach. We denote
by qx,y,t−1 and qx,y,t two consecutive query patches at position x,y in frames
t −1 and t, respectively. Let ri and r j be their NN matches in the reference
set. Once ri is found, one could search for r j within a “fat” ring of radius
dist(ri,qx,y,t)± ε , around ri, as illustrated in Figure 2.(a). In areas with
significant change qx,y,t will be far from ri, the ring radius will be large and
will include many reference patches. On the contrary, in areas with little
change qx,y,t will be near ri, the ring radius will be small and will include
only a few candidate reference patches.

As can be seen in Figure 2.(a), the ring around ri includes the neighbors
of qx,y,t , but it also includes reference patches that are very far from qx,y,t ,
e.g., on the other side of the ring. To exclude these patches from the set of
candidates we further draw rings of radius dist(rk,qx,y,t)± ε , around points
rk selected at random from the current set of candidates. The final candidate
NNs are those that lie in the intersection of all rings, as illustrated in Fig-
ure 2.(b). Hence, the name of our approach Ring Intersection Approximate
Nearest Neighbors (RIANN).

Our experiments show that RIANN computes ANNF for video in real-
time, even for XVGA resolution. To confirm the usefulness of the proposed
framework the paper describes how it can be adopted for real-time video
processing. We show that a broad range of patch-based image transforma-
tions can be approximated using our nearest neighbor matching. Specifically
we provide examples of realtime video denoising, colorization and several
styling effects.

[1] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Gold-

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

Figure 1: Video ANN Fields: (a) Input: Live stream of video frames. (b)
A reference set of image patches. (c) For each frame, a dense ANN Field
is produced by matching patches from the reference set. This is done in
realtime.

Figure 2: Ring Intersection Hashing: (a) To find candidate neighbors for
qx,y,t we draw a ring of radius d = dist(ri,qx,y,t) and width 2ε around ri.
Here ri is the match found for qx,y,t−1. (b) To exclude candidates that are
far from qx,y,t , we draw another ring, this time around rk, one of the current
candidates. We continue to add rings, and leave in the candidate set only
those in the intersection.

man. PatchMatch: A randomized correspondence algorithm for struc-
tural image editing. Int. Conf. Multimedia, 28(3), 2009.

[2] Connelly Barnes, Eli Shechtman, Dan B Goldman, and Adam Finkel-
stein. The generalized PatchMatch correspondence algorithm. In Euro-
pean Conf. Comput. Vision, 2010.

[3] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely random-
ized trees. Mach. Learn., 63(1):3–42, 2006.

[4] Kaiming He and Jian Sun. Computing nearest-neighbor fields via
propagation-assisted kd-trees. In Proc. Conf. Comput. Vision Pattern
Recognition, pages 111–118, 2012.

[5] Olonetsky Igor and Avidan Shai. Treecann - k-d tree coherence approx-
imate nearest neighbor algorithm. In European Conf. Comput. Vision,
volume 7575, pages 602–615, 2012.

[6] Simon Korman and Shai Avidan. Coherency sensitive hashing. In Proc.
Int. Conf. Comput. Vision, pages 1607–1614, 2011.

[7] Marius Muja and David G. Lowe. Fast approximate nearest neighbors
with automatic algorithm configuration. In In VISAPP International
Conference on Computer Vision Theory and Applications, pages 331–
340, 2009.

http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

