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Ubiquitous motion blur, which is caused by camera shaking or fast

object moving, easily fails most previous methods in multi-frame super-

resolution (MFSR). Moreover, in high-res videos, regions of interest (ROI)

are still small areas, where even small motion blur may cause severe degra-

dations. As shown in Fig. 1. Although common in captured videos, motion

blur has not been sufficiently studied for the MFSR task in literatures.

Figure 1: MFSR results on a real video sequence. Green box: Input frames

(150×120) directly cropped from an iPhone video. Three clearest ones are

selected. Motion blur and compression artifacts are present. (a) Result of

single image deblurring [4]. (b) Result of video deblurring [1]. (c) Result of

video upsampling [3]. (d) MFSR result [2]. (e) Our result (×3).

We proposed an integrated framework to estimate motion blur and high-

res image with quality feedback and control. Formally, we want to estimate

a high-res image I corresponds to IL
0 from a set of low-res images Ω =

{IL
−N , · · · , I

L
0 , · · · , I

L
N}. The imaging model is:

IL
i = SKiF0→iI +n where i =−N, · · · ,N. (1)

Here, I is the latent high-res image. F = {F0→−N , · · · , F0→0, · · · ,F0→N} is a

set of matrices corresponding to the optical flow from I to each frame. S and

Ki correspond to down-sampling and filtering matrices. Ki = KaKbi
, where

Ka is the anti-aliasing kernel, Kbi
is the motion blur kernel. n is the noise.

Given this model, I, K and F are estimated through MAP:

{I,K,F}= argmax
I,K,F

P(I)P(K)P(F)P(Ω|I,K,F). (2)

To robustly handle degenerated low-res inputs in the presence of motion

blur, the key of our approach is to introduce a binary latent variable Z =
{Z−N , · · · ,Z0, · · · ,ZN} to classify each pixel from each input image as either

useful (Z = 1) or useless (Z = 0). We want to exclude pixels that are largely

blurred compared to other temporal correspondences. This is because we

observed that those blurred edges could easily mislead kernel estimation in

MFSR, while a careful temporal selection of clear pixels can compose an

image with sharp structures which is beneficial to kernel estimation. We

write Eq.(2) as:

{I,K,F}= argmax
I,K,F

P(I)
N

∏
i=−N

[P(Ki)P(F0→i)∑
Zi

P(IL
i ,Zi|I,K,F )]. (3)

We adopt classical regularizer for P(K), P(F), and pixel-wise decompose:

P(IL
i ,Zi|I,K,F ) = ∏p

P(IL
i,p|Zi,p,I,K,F )P(Zi,p|I,K,F ). (4)

This is an extended abstract. The full paper is available at the

Computer Vision Foundationwebpage.

where p index each pixel. The likelihood term is set as:

P(IL
i,p|Zi,p,I,K,F ) ∝

{

exp{−λ
∣

∣Di,p

∣

∣} if Zi,p = 1
1 otherwise

(5)

where the error Di = SKiF0→iI − IL
i . We propose to define the prior ter-

m based on temporal relative sharpness of the pixels from the conditional

Bernoulli distribution:

P(Zi,p=1|I,K,F )∝

{

exp{−γ/Wi,p} if SKiF0→iI ∈ [0,1]
0 otherwise

(6)

where Wi,p =Wp(Vi,p). Wp(x) (x∈ [0,1]) is the cumulative distribution func-

tion of Vi,p for i ∈ −N, · · · ,N, which measures the temporal relative sharp-

ness of pixel p across all frames:

Vi,p =
∑q∈N (p)

∥

∥∇Ji,q

∥

∥

1

∑N
j=−N ∑q∈N (p)

∥

∥∇J j,q

∥

∥

1
+ ε

. (7)

Here, Ji is the i-th registered image, and Ji,p denotes its p-th pixel. To keep

useful salient structures while suppressing noise, we employ a family of

sparse image priors. We show that the binary latent variable and the high-

res image/flow/kernel can be iteratively estimated in an EM framework.

Our method produces satisfying results on challenging real-world low-

res noisy and blurred sequences. In addition to ROI and motion blur, it also

works for natural images corrupted with compression blur, some examples

are shown in Fig. 2, more can be found in our paper and supplementary file.

Figure 2: More results. (a) Some input frames from real-world in-

frared/surveillance video sequence. (b) Our MFSR results.
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