
A Weighted Sparse Coding Framework for Saliency Detection

Nianyi Li, Bilin Sun, Jingyi Yu
Department of Computer and Information Sciences, University of Delaware, DE, USA.

There is an emerging interest on using high-dimensional datasets beyond
2D images in saliency detection. Examples include 3D data based on stereo
matching and Kinect sensors and more recently 4D light field data. Howev-
er, these techniques adopt very different solution frameworks, in both type
of features and procedures on using them.

In this paper, we present a universal saliency detection framework for
handling heterogenous types of input data. We set out to build saliency/non-
saliency dictionaries using data-specific features. Specifically, we first select
a group of potential foreground superpixels to build the saliency dictionary.
We then prune the outliers and test on the remaining super-pixels to itera-
tively refine the dictionaries. A major advantage of our technique is that it
provides a universal framework for all different types. The only variation
to the algorithm is input features: for 2D images, we use color, texture and
focusness characteristics; for stereo data, we add depth/disparity cues; and
for the 4D light field data, we add focusness cues on focus stack. Compre-
hensive experiments on a broad range of datasets (MSRA-1000 and SOD
for 2D, SSB [4] for 3D, and the light field saliency dataset[2] for 4D) show
that our technique outperforms state-of-the-art solutions.

Our approach is based on building saliency/non-saliency dictionaries,
which are built for superpixels in reference image I, i.e., image used for
generate disparity map in stereo pair data and the all-focus image in light
filed data.

For each pixel in the reference image, we set out to associate with a
feature vector. As mentioned above, we utilize different feature descriptors
for 2D, 3D and 4D imagery data. From the feature vectors of all pixels,
we generate two feature matrices for all super-pixel. The first scheme is
through averaging per-pixel feature vectors within the superpixel. Our sec-
ond scheme computes the histogram over three color channels. We use FA

and FH to representing the resulting feature matrix respectively.
From FA and FH , we develop a sparse coding framework: saliency su-

perpixels correspond to the ones that yield to low reconstruction error from
the saliency dictionary. We use the error measure to refine the foreground
superpixels and to identify foreground saliency ones.

For saliency detection, we adopt the weighted sparse coding scheme[1]:

ααα iii = argmin
ααα iii

‖ fff iii−−−DDDααα iii‖2
2 +λ‖dddiiiaaaggg(((ωωω iii))) ···ααα iii‖1 (1)

where the jth value of ωi is the penalty for using the jth member in template
D to encode fi. The goal is to find a sparse code αi that can achieve the
maximum/minimum reconstruction error. Notice that large ωi will suppress
nonzero entries αi and force the solution α to concentrate on indices where
ωi is small. Therefore,if the fi is similar to some template in D, the penalty
ωi should be small and vice versa.

We use ωD
ri

to represent the weight/penalty for superpixel ri, where D ∈
{A,H}. ωD

ri
= [g(ri,D1),g(ri,D2)...g(ri,DK)]

T is a vector that computes the
similarity between superpixel ri (in feature matrix FD) to all the members
in template D and

g(ri,D j) = e‖F
D

ri
−D j‖ (2)

Next, we use (A, ωA
ri

) and (H, ωH
ri

) as input to Eqn. 1 to generate to sparsely
coded dictionary αA

ri
and αH

ri
respectively. We then compute the reconstruc-

tion error εA
ri

and εH
ri

for each ri:

ε
D
ri
= ‖FD

ri
−Dα

D
ri
‖2

2 (3)

The saliency function SalD(ri) relates to the dictionary’s type (saliency or
non-saliency). For non-saliency dictionary, it will assign high values to su-
perpixels of a high εD

ri
value. Similarly, for saliency dictionary, SalD(ri) will

assign high value to superpixels with low εD
ri

.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

Image(stack) Ground Truth DSR Ours

Figure 1: Our method vs. the latest feature-matrix-based DSR algorithm [3]
on different data inputs. From top to bottom: we show results on 2D images,
3D stereo data, and 4D light field data.

Finally, we combine SalA(ri) and SalH(ri) to get the saliency value for
ri:

Sal(ri) = SalA(ri)+SalH(ri) (4)

We define saliency dictionary as a set of superpixels S = {rs1 ,rs2 , ...rsk}
which are regarded as the potential saliency regions and will be refined
through our framework. To get the initial saliency dictionary, we compute a
non-saliency dictionary by [5] to reconstruct the reference image, and patch-
es with high reconstruction error are selected saliency dictionary S0. We
start with using S0 as input to the weighted sparse framework. At each itera-
tion, we will refine the saliency dictionary using the estimated saliency map.
The algorithm terminates when there is no change to the saliency dictionary.

In conclusion, we have presented a novel saliency detection algorithm
that is applicable to 2D image data, 3D stero/depth data, and 4D light field
data without modifying the processing pipeline. We show that two types of
feature descriptors are complimentary to each other for handling variation-
al types of texture/color scene compositions. Comprehensive experiments
have shown that it outperforms previous tailored solutions for different data
types.

[1] Jian Huang, Shuangge Ma, and Cun hui Zhang. Adaptive lasso for s-
parse highdimensional regression. Technical report, University of Iowa,
2006.

[2] Nianyi Li, Jinwei Ye, Yu Ji, Haibin Ling, and Jingyi Yu. Saliency de-
tection on light field. In CVPR, June 2014.

[3] Xiaohui Li, Huchuan Lu, Lihe Zhang, Xiang Ruan, and Ming-Hsuan
Yang. Saliency detection via dense and sparse reconstruction. In ICCV,
2013.

[4] Yuzhen Niu, Yujie Geng, Xueqing Li, and Feng Liu. Leveraging stere-
opsis for saliency analysis. In CVPR, 2012.

[5] Wangjiang Zhu, Shuang Liang, Yichen Wei, and Jian Sun. Saliency
optimization from robust background detection. In CVPR. IEEE, 2014.

http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

