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Estimating depths from a single monocular image is challenging as no re-
liable depth cues are available, e.g., stereo correspondences, motions etc.
Previous methods either exploit geometric assumptions [3] or employ non-
parametric methods [1]. The former is constrained to model particular scene
structures, while the latter is prone to propagate errors through different de-
couple stages. Recent efforts have been focusing on exploiting additional
sources of information, e.g., semantic labels [2], which are generally not
available. We in this paper present a deep convolutional neural field model
for estimating depths from a single image, without relying on any geometric
assumptions nor extra information. Specifically, we propose a deep struc-
tured learning scheme which learns the unary and pairwise potentials of con-
tinuous conditional random field (CRF) [4] in a unified deep convolutional
neural network (CNN) framework.

In our method, the integral of the partition function can be analytically
calculated, thus we can exactly solve the log-likelihood optimization. More-
over, solving the MAP problem for predicting depths of a new image is
highly efficient as closed-form solutions exist. We experimentally demon-
strate that the proposed method outperforms state-of-the-art depth estima-
tion methods on both indoor and outdoor scene datasets.

Let x be an image and y = [y1, . . . ,yn]
> ∈ Rn be a vector of continuous

depth values of all n superpixels in x. We model the conditional probability
distribution of the data with the following density function:

Pr(y|x) = 1
Z(x)

exp(−E(y,x)), (1)

where Z is the partition function: Z(x) =
∫

y exp{−E(y,x)}dy; E is the en-
ergy function. Here, because y is continuous, the integral in Z(x) can be an-
alytically calculated under certain circumstances (refer to paper for details).
This is different from the discrete case, in which approximation methods
need to be applied. To predict the depths of a new image, we solve the
maximum a posteriori (MAP) inference problem:

y? = argmax
y

Pr(y|x). (2)

We formulate the energy function as a typical combination of unary
potentials U and pairwise potentials V over the nodes (superpixels) N and
edges S of the image x:

E(y,x) = ∑
p∈N

U(yp,x)+ ∑
(p,q)∈S

V (yp,yq,x). (3)

The unary term U aims to regress the depth value from a single superpixel.
The pairwise term V encourages neighbouring superpixels with similar ap-
pearances to take similar depths. We aim to jointly learn U and V in a unified
CNN framework.

Unary potential The unary potential is constructed from the output of a
CNN by considering the least square loss:

U(yp,x;θ) = (yp− zp(θ))
2, ∀p = 1, ...,n. (4)

Here zp is the regressed depth of the superpixel p parametrized by the CNN
parameters θ .

Pairwise potential We construct the pairwise potential from K types of
similarity observations, each of which enforces smoothness by exploiting
consistency information of neighbouring superpixels:

V (yp,yq,x;β ) =
1
2

Rpq(yp− yq)
2, ∀p,q = 1, ...,n. (5)
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Figure 1: An illustration of our deep convolutional neural field model for
depth estimation. The input image is first over-segmented into superpixels.
In the unary part, for a superpixel p, we crop the image patch centred around
its centroid, then resize and feed it to a CNN composed of 5 convolutional
and 4 fully-connected layers. In the pairwise part, for a pair of neighbouring
superpixels (p,q), we consider K types of similarities, and feed them into
a fully-connected layer. The outputs of unary part and the pairwise part
are then fed to the CRF structured loss layer, which minimizes the negative
log-likelihood. Predicting the depths of a new image x is to maximize the
conditional probability Pr(y|x), which has closed-form solutions.

Here Rpq is the output of the network in the pairwise part (see Fig. 1) from
a neighbouring superpixel pair (p,q). We use a fully-connected layer here:

Rpq = β
>[S(1)pq , . . . ,S

(K)
pq ]> =

K

∑
k=1

βkS(k)pq , (6)

where S(k) is the k-th similarity matrix whose elements are S(k)pq (S(k) is sym-
metric); β = [β1, . . . ,βk]

> are the network parameters.

Learning We minimizes the negative conditional log-likelihood of the
training data:

min
θ ,β≥0

−
N

∑
i=1

logPr(y(i)|x(i);θ ,β )+
λ1

2
‖θ‖2

2 +
λ2

2
‖β‖2

2 , (7)

where x(i), y(i) denote the i-th training image and the i-th depth map; N is
the number of training images; λ1, λ2 are weight decay parameters.

Implementation of the method using MatConvNet [5] and details of net-
work architectures are described in the paper. We conclude that the proposed
method provide a general framework for joint learning of deep CNN and
continuous CRF, which can be used for depth estimations of general scenes.
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