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While widely acknowledged as highly effective in computer vision, multi-
label MRFs with non-convex priors are difficult to optimize. Even though
graph-cut-based algorithms [1] have proven successful for specific problems
(e.g., metric priors), there does not seem to be a single algorithm that per-
forms well with different non-convex priors such as the truncated quadratic,
the Cauchy function and the corrupted Gaussian.

Here, we propose to fill this gap and introduce a graph-cut-based algo-
rithm that iteratively approximates the original MRF energy with an appro-
priately weighted surrogate energy that is easier to minimize. We show that,
under suitable conditions on the non-convex priors, our algorithm guaran-
tees that the original energy decreases at each iteration. In particular, we
consider the scenario where the global minimizer of the weighted surrogate
energy can be obtained by a multi-label graph cut algorithm [3], and show
that our algorithm then lets us handle of large variety of non-convex priors.

In fact, our method is inspired by the IRLS algorithm which is well-
known for continuous optimization. To the best of our knowledge, this is
the first time that such a technique is transposed to the MRF optimization
scenario.

Let us consider a multi-label MRF with pairwise node interactions,
where V is the set of nodes, N is the set of edges and each node p takes
a label xp ∈ L, with L the set of labels. The energy of such an MRF can be
expressed as

E(x) = ∑
p∈V

θ
u
p(xp)+ ∑

(p,q)∈N
θ

b
pq(xp,xq) , (1)

where θ u and θ b denote the unary potentials and pairwise potentials respec-
tively. To apply our algorithm, we require the pairwise potentials to take the
form

θ
b
pq(xp,xq) = hb ◦ fpq(xp,xq) , (2)

where hb is concave and fpq is arbitrary. Then, we define the surrogate
energy as

Ẽ(x) = ∑
p∈V

θ
u
p(xp)+ ∑

(p,q)∈N
wt

pq fpq(xp,xq) , (3)

where wt
pq = hs

b
(

fpq(xt
p,x

t
q)
)

is the supergradient of hb. As shown in the
paper, the original energy (1) can be minimized by iteratively minimizing
the surrogate energy (3). In fact, the concavity of hb guarantees that the true
energy decreases at each iteration if the surrogate energy decreases.

To minimize the surrogate energy (3), we make use of the multi-label
graph cut [3], which requires an ordered label set and imposes that

fpq(xp,xq) = g(|xp− xq|) , (4)

where g is a convex function. In addition, to apply max-flow, the edge
weights of the multi-label graph need to be non-negative. This translates
into a requirement for hb to be non-decreasing, which comes at virtually no
cost in the context of smoothness potentials in an MRF. In summary, at each
iteration of our algorithm (called IRGC) we minimize

Ẽ(x) = ∑
p∈V

θ
u
p(xp)+ ∑

(p,q)∈N
wt

pqg(|xp− xq|) , (5)

where g is a convex function, and wt
pq = hs

b
(

fpq(xt
p,x

t
q)
)
, with hb a concave,

non-decreasing function.
In the context of computer vision problems with ordered label sets, e.g.,

stereo and inpainting, it is often important to make use of robust estima-
tors as pairwise potentials to better account for discontinuities, or outliers.
Many such robust estimators belong to the family of functions with a sin-
gle inflection point in IR+, e.g., the truncated linear, the truncated quadratic
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(a) θ - Cauchy function
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Figure 1: (a) Plots of θ , g and hb with θ(z) = hb ◦ g(z), for θ the Cauchy
function. Here g is convex and hb is concave. (b) Energy vs time (seconds)
for several algorithms on the Venus stereo problem with truncated quadratic
prior. IRGC and IRGC+expansion outperform the other algorithms.

TRW-S IRGC IRGC+expansion
Average Quality 0.4577% 3.1116% 0.2431%

Table 1: IRGC+expansion clearly yields better quality energies than TRW-S
on average.

and the Cauchy function [2]. For such functions θ(z) = hb ◦ g(z), we pro-
vide a method to choose g and hb to make the multi-label graph as sparse
as possible to limit the required memory. See Fig. 1(a) for an example.
Note, however, that our algorithm is not limited to the family of functions
described above.

While IRGC guarantees that the energy value decreases at each iter-
ation, it remains prone to getting trapped in local minima. We therefore
introduce a hybrid optimization strategy that combines IRGC with a differ-
ent minimization technique, e.g., α-expansion, and our experiments confirm
that this variety in optimization is effective to overcome local minima. We
refer to this algorithm as IRGC+expansion.

We evaluate our algorithms on stereo and inpainting problems and com-
pare our results with those of α-expansion, α-β swap [1], multi-label swap [6]
and TRW-S [4]. Our hybrid version consistently outperforms (or performs
virtually as well as) state-of-the-art MRF energy minimization techniques.
See Fig. 1(b) for an example. To evaluate the quality of the minimum en-
ergies, we followed the strategy of [5], which evaluates the relative gap be-
tween the lower bound found by TRW-S and the minimum energy of an
algorithm. In Table 1, we compare these quality measures averaged over
several stereo and inpainting problems.

In conclusion, with our IRGC algorithm, multi-label graph cut can be
used to minimize multi-label MRF energies with arbitrary data terms and
non-convex priors. Finally, IRGC really is a special case of an iteratively
reweighted approach to MRF, and even continuous, energy minimization.
We therefore plan to study this approach further in the future.
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