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Face alignment approaches typically include classic active appearance model
[3], constrained local model [6], etc. Recently emerged regression based
alignment methods [2, 4, 5, 7] have attracted great research interests and
achieved state-of-the-art results. This type of method typically starts from a
rough estimate of the shape (typically mean shape) and refine the shape by
several iterations, as

xk+1 = xk + rk(φ(I;xk)), (1)

where the 2n dimensional shape vector xk represents the current estimate
of (x,y) coordinates of the n landmarks after the kth iteration. The local
appearance patterns indexed by the shape x on the face image I is denoted
as φ(I;x), and rk is the kth learned regressor. This purely discriminative
regression method can encode explicit shape constraints in all steps and al-
ways predict reasonable results.

Despite its great discriminative power, the cascaded regression method
still falls into limitations. One of the limitations comes from the initiali-
sation nature of regressors. As demonstrated in our paper, the regressors
tend to predict disparate shapes while given different initial shapes. This in-
consistency is resulted from: i) shapes are predicted in an additive manner;
and ii) features are indexed by the current estimated landmarks. Typically,
cascaded regression applies the mean shape as the initial shapes of the first
iteration since it produces the least initial error. However, if the target shape
is far away from initial mean shape, the regressor might be caught in lo-
cal optima, leading to inaccurate estimate. Our work aims to suppress such
effects brought by the cascaded regressors, through switching from single-
shape based regression to shape sub-region optimisation.

We divide the shape searching procedure into several stages, in which
each stage is related to refining a shape sub-region. We form a 2n dimen-
sional shape space, and denote N candidate shapes in the space as S =
{s1,s2, ...,sN} (N � 2n). We denote a shape sub-region by two elements(

x̄(l),PR
(l)

)
, where x̄(l) denotes the center of the estimated shape sub-region,

and PR
(l) represents the probability distribution that defines the scope of es-

timated sub-region around the center. Hence each searching stage contains
two steps: searching for the sub-region center, and determine the probability
of the candidate shapes (i.e. delineating the searching scope). While search-
ing progresses through stages, the estimated sub-region tends to shrink its
size and moving towards the target shape. Figure 1(a) serves as an illustra-
tion.

In each stage, we first determine the sub-region center x̄(l) when given
the sub-region probability distribution PR

(l−1). We select candidate initial

shapes according to the distribution PR
(l−1), and for the ith sample we denote

its jth candidate as xi j
0 . We then train Kl cascaded regressors based on this

specific stage distribution, as

rk = argmin
r

N

∑
i=1

Nl

∑
j=1
‖xi∗−xi j

k − r(φ(I;xi j
k ))‖

2
2 +Φ(r),

xi j
k+1 = xi j

k + rk(φ(I;xi j
k )) k = 0, . . . ,Kl −1

(2)

where Φ(r) denotes the `2 regularisation term for each parameter in model
r. During testing, we use the learned regressors for that stage to obtain
the resulted shapes.To get the sub-region center based on these obtained
resulted shapes, we apply dominant set approach to avoid the influence from
the outliers. The goal of the this approach is to find a consistent shapes
clique within all the resulted shapes and exclude outliers. Through replicator
dynamics, we could obtain the estimated shape as the sub-region center.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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Figure 1: (a) The coarse-to-fine shape searching method for estimating the
target shape. (b) Example images where the proposed CFSS outperforms
CFAN [8], LBF [5] and SDM [7].

Next, we need to delineate the sub-region scope PR
(l−1) based on the

estimated sub-region center x̄(l). We model the probabilistic distribution
into two parts, as

P(s− x̄|φ(x̄)) ∝ P(s− x̄)P(φ(x̄)|s− x̄), (3)

where s represents the candidate shapes. The first part, P(s− x̄) could be sta-
tistically learned based on the current error distribution between estimated
sub-region center and ground-truth on all training samples. It approximately
delineates the searching scope near φ(x̄) and typically its distribution is
more concentrated in later stages. For the second part P(φ(x̄)|s− x̄), we
divide it into different facial parts. This is because given the exemplar candi-
date shapes, the probability is conditionally independent for different facial
parts [1]. The learned probabilistic distribution is used for sampling in next
stage. Shape constraints are still strictly encoded throughout our method.

The proposed method achieves state-of-the-art results. Specifically, our
method outperforms cascaded methods especially in cases with large pose
variation. On the 300-W challenging dataset, we gain over 16% of error
reduction compared to previous state-of-the-art. Illustrative examples can
be found in Fig. 1(b) and our paper.
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