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We describe a single-frame super-resolution method for reconstructing high-
resolution (abbr. high-res) faces from very low-resolution (abbr. low-res)
face images (e.g. smaller than 16× 16 pixels) by learning a nonlinear La-
grangian model for the high-res face images. Our technique is based on the
mathematics of optimal transport, and hence we denote it as transport-based
SFSR (TB-SFSR). In the training phase, a nonlinear model of high-res fa-
cial images is constructed based on transport maps that morph a reference
image into the training face images. In the testing phase, the resolution of
a degraded image is enhanced by finding the model parameters that best fit
the given low resolution data.

Generally speaking, most SFSR methods [2, 3, 4, 5] are based on a
linear model for the high-res images. Hence, ultimately, the majority of
SFSR models in the literature can be written as, Ih(x) = ∑i wiψi(x), where
Ih is a high-res image or a high-res image patch, w’s are weight coefficients,
and ψ’s are high-res images (or image patches), which are learned from the
training images using a specific model. Here we propose a fundamentally
different approach toward modeling high-res images. In our approach the
high-res image is modeled as a mass preserving mapping of a high-res tem-
plate image, I0, as follows

Ih(x) = det(I+∑
i

αiDvi(x))I0(x+∑
i

αivi(x)), (1)

where I is the identity matrix, αi is the weight coefficient of displacement
field vi (i.e. a smooth vector field), and Dvi(x) is the Jacobian matrix of the
displacement field vi, evaluated at x. The proposed method can be viewed
as a linear modeling in the space of mass-preserving mappings, which cor-
responds to a non-linear model in the image space. Thus (through the use of
the optimal mapping function f(x) = x+∑i αivi(x)) our modeling approach
can also displace pixels, in addition to changing their intensities.

Given a training set of high-res face images, I1, ..., IN : Ω → R with
Ω = [0,1]2 the image intensities are first normalized to integrate to 1. This
is done so the images can be treated as distributions of a fixed amount of in-
tensity values (i.e. fixed amount of mass). Next, the reference face is defined
to be the average image, I0 = 1

N ∑
N
i=1 Ii, and the optimal transport distance

between the reference image and the i’th training image, Ii, is defined to be,

dOT (I0, Ii) = minui

∫
Ω

|ui(x)|2Ii(x)dx

s.t. det(I+Dui(x))I0(x+ui(x)) = Ii(x) (2)

where (f(x) = x+u(x)) : Ω→ Ω is a mass preserving transform from Ii to
I0, u is the optimal displacement field, and Dui is the Jacobian matrix of
u. The optimization problem above is well posed and has a unique min-
imizer [1]. Having optimal displacement fields ui for i = 1, . . . ,N a sub-
space, V , is learned for these displacement fields. Let v j for j = 1, ...,M
be a basis for subspace V. Then, any combination of the basis displacement
fields can be used to construct an arbitrary deformation field, fα (x) = x+
∑

M
j=1 α jv j(x), which can then be used to construct a given image Iα (x) =

det(Dfα (x))I0(fα (x)). Hence, subspace V provides a generative model for
the high-res face image. In the testing phase, we constrain the space of
possible high-res solutions to those, which are representable as Iα for some
α ∈ RM . Hence, for a degraded input image, Il , and assuming that φ(.) is
known and following the MAP criteria we can write,

α
∗ = argminα

1
2
‖Il −φ(Iα )‖2

2

s.t Iα (x) = det(Dfα (x))I0(fα (x)) (3)

where a gradient descent approach is used to obtain a local optima α∗. Note
that, images of faces (and other deformable objects) differ from each other
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Figure 1: Training images are morphed to a reference image and the optimal
displacement fields are calculated for every image (i). The principal compo-
nents of optimal displacement fields are calculated, vi (ii). Demonstration of
face modeling using only two of the displacement fields (iii), where, σi and
σ j are the standard deviation of the projected training displacement fields
onto vi and v j, respectively. Sample results are shown in (iv), where (a)
and (g) are the low-res and high-res images (b) is the cubic spline interpo-
lated image, (c), (d), and (e) are obtained using the methods in [2, 4, 5],
respectively, and (f) is obtained using our proposed method.

not only due to differences in appearance (i.e. tone and texture) of their
parts, but also due to the different locations of these parts for different indi-
viduals. Hence, trying to model the displacement of parts by only taking the
co-variance structure of intensities on a fixed grid would lead to high vari-
ances at each pixel. Therefore, the nonlinear model we use is more effective
in capturing the real variations in appearance of the data.
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