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Detecting multiple model instances simultaneously is an active area of re-
search. Early approaches in identifying multiple model instances estimated
models sequentially using a single-model fitting method [2]. More recent
studies try to find all the model instances and their parameters simultane-
ously. Generally, the research in this area is focused on two main aspects: (i)
the study of the sampling process, whereby subsets of the data points are se-
lected with the purpose of simultaneously instantiating the underlying model
instances[4], and (ii) the clustering process which is used for grouping the
data points, and the estimation of the underlying model parameters[1]. In
this paper, our focus is mainly on the sampling step. In fact, our sampling
method can be used as the front end to any unsupervised clustering method.
Rather than focusing on the strategy of maximizing the probability of sam-
pling inliers, our goal is to minimize the number of samples needed to in-
stantiate all underlying model instances. More specifically, the proposed
method named Sparse Withdrawal of Inliers in a First Trial (SWIFT) an-
swers the following question:

“Given a large population of points with multiple instances of a struc-
ture and gross outliers, what is the minimum number of points r to be sam-
pled randomly from this population in one grab, in order to make sure with
probability P that there are at least ε samples on each structure instance?”
Here, ε is greater than or equal to the number of samples needed to deter-
mine the number of degrees of freedom of the structure.

To derive the SWIFT sampling scheme, we start by dealing with the
worst case scenario where in a population of N observations, the size of all
model instances presumed to be equal to the minimum model size θ and
no gross outlier exists in the dataset. Thus, the maximum possible classes
would be C = N/θ . By this assumption, the objective of the SWIFT method
can be expressed as the problem of finding r such that, for a given value δ >
0, the probability of selecting at least ε points in each of C model instances
is at least 1−δ . Thus P can be written as:
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The solution of the above problem is related to the question of finding
upper bounds for the tail probabilities of the multivariate hypergeometric
distribution. The usual approach is to use some kind of asymptotic expan-
sion of the multivariate hypergeometric probability, or to approximate it by
a multinomial probability. The difference between solution of the inequality
(1) and the settings that have been considered previously is that (i) we are
interested in constructing a non-asymptotic approach that will work for vari-
ous parameter settings and (ii) we are interested in the solution of the inverse
problem of finding r rather than estimating the probability in the left-hand
side of the inequality (1). We show that the total probability of selecting not
less than ε points in each of the model instance can be bounded above using
de Morgan’s laws.

We prove that quation (2) is an upper-bound to equation (1) and can be
used to obtain the value of r required for SWIFT sampling. Considering that
equation (1) is a non-decreasing function when C is reasonably small, r can
simply be computed by using a binary search through all possible values.
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To verify the accuracy of the estimated bounds, we compared the val-
ues of our approximation against the theoretical values. We chose different
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population sizes with different embedded model instances. The result of
theoretical and estimated values of r are plotted against different desired
probability values in Figure 1. As expected, our approximations closely
follow the theoretical values.

Figure 1: Comparison of estimated r averaged over 200 independent trials
versus the theoretical value of r when N = {100,1000,10000} and ε = 2.
From left to right: C = {5,20,50}.

SWIFT can be used in virtually any scenario where multiple structures
need to be detected in a large population. Detecting planes in 3D space is
one of the applications studied in this paper. Figure 2 shows the result of
detecting planes in point cloud data using the two-level SWIFT algorithm.

Figure 2: Detecting planes in 3D point cloud data collected using a Kinect.
The population size is N = 167,028 and θ = 30,000. By setting P = 0.9,
on the 1st level ε = 3 then r = 43 and on the 2nd level ε = 100 then r = 714.

Moreover, we compare SWIFT with other existing methods in terms of
sparseness and precision/recall. Since one of the primary goals of SWIFT is
sparse sampling, we compared the sample size computed by SWIFT against
the number of sampled points in other existing methods. Figure 3 shows the
result of comparing the computed number of sample points in SWIFT, the
method in [3], and the sequential-RANSAC.

Figure 3: Comparing the averaged number of samples r over 200 trials in
sequential RANSAC, the proposed method in [3], and the SWIFT sampling
when N = {100,1000,10000}, ε = 2 and P = 0.9.
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