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Regularizing images under a guidance signal has been used in various tasks
in computer vision and computational photography, particularly for noise
reduction and joint upsampling. The aim is to transfer fine structures of
guidance signals to input images, restoring noisy or altered structures. One
of main drawbacks in such a data-dependent framework is that it does not
handle differences in structure between guidance and input images. We ad-
dress this problem by jointly leveraging structural information of guidance
and input images. Image filtering is formulated as a nonconvex optimization
problem, which is solved by the majorization-minimization algorithm.
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resenting the input image, static guidance and the output image (or dy-
namic guidance), respectively, where N = |I| is the size of images. The
influence of the guidance on the input image varies spatially, and is con-
trolled by affinity functions that measure similarities between adjacent ver-
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µ and n are the bandwidths of static and dynamic guidance, respectively.
N is a set of neighborhoods that can be defined in a local and/or nonlo-
cal manner. Let W
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C = diag([c1, . . . ,cN

]). We minimize an objective function of the form:
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, and � denotes the Hadamard product of the matrices.
1 is a N ⇥1 vector, where all the entries are 1. The diagonal entries c

i

of C
are confidence values for the pixels i of the input image.
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Figure 1: Sketch of the majorization-minimization algorithm. Given some
estimate u

k of the minimum of E , a surrogate function Qk(u) is constructed.
The next estimate u

k+1 is then computed by minimizing Qk

Solver. We solve this nonconvex optimization problem by the majorization-
minimization algorithm (Fig. 1) [1]:
1. Majorizaiton Step: Construct a surrogate function Qk(u) of E(u) such
that ⇢

E(u)Qk(u),8u,uk 2 Q
E(uk) =Qk(uk),8u
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where Q ⇢ [0,1]N , as follows:
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Lk = Dk �Wk is a dynamic Laplacian matrix at the step k, where Wk =
W
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). Note that the affinity function of static guidance is fixed regardless of
steps, and that of dynamic guidance is iteratively updated.
2. Minimization Step: Obtain the next estimate u

k+1 by minimizing the
surrogate function Qk(u) w.r.t. u as follows:

u

k+1 = argmin
u2Q

Qk(u) = (C+lLk)�1Cf. (4)
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Figure 2: An example of (a) energy evolution and (b) a sum of intensity
difference between successive steps, i.e., ku

k �u

k+1k1, given (c) the input
image. Our model monotonically converges, and guarantees a meaningful
solution in the steady-state: (d) u

0 = 1, k = 30, and (e) u

0 = u

l1 , k = 7. In
this example, for removing textures, g is set to the Gaussian filtered version
(standard deviation, 1) of the input image [l = 50, µ = 5, n = 40].

The above iterative scheme decreases the value of E(u) monotonically in
each step, i.e.,

E(uk+1)Qk(uk+1)Qk(uk) = E(uk), (5)

and it can be shown to converge to a local minimum of E [2].
Convergence. Figure 2 shows how (a) the energy and (b) the intensity dif-
ferences (i.e., ku

k�u

k+1k1) evolve at each step given the input image in (c).
Our solver converges in fewer steps with the l1 initialization (u0 = u

l1 ) than
with the constant one (u0 = 1), with faster overall speed, despite the over-
head of the l1 minimization. On this example, our solver with the constant
and l1 initializations converges in 30 and 7 steps (Fig. 2 (d) and (e)), each
of which takes 45 and 20 seconds, respectively. Although our solver with
u

0 = 1 converges more slowly, the per-pixel intensity difference decreases
monotonically, and 5 steps are typically enough to get satisfactory results in
both cases1 .
Applications. We demonstrate the flexibility and effectiveness of our model
in several applications including depth super-resolution, scale-space filter-
ing, texture-aware smoothing, flash/non-flash denoising, and RGB/NIR de-
noising.
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1After 5 steps, an average (maximum) value of the per-pixel intensity difference is 9.4⇥10�5

(1.7 ⇥ 10�3) with u

0 = 1 and 4.3 ⇥ 10�5 (8.7 ⇥ 10�4) with u

0 = u

l1 . Current un-optimized
MATLAB implementation on 2.5 GHz CPU takes about 9 seconds (u0 = 1) and 16 seconds
(u0 = u

l1 ) to filter an image of size 500⇥400 with a 8-neighborhood system and k = 5.
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