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Statistical analysis of longitudinal or cross sectional brain imaging data to
identify effects of neurodegenerative diseases is a fundamental task in vari-
ous studies in neuroscience. However, when there are systematic variations
in the images due to parameter changes such as changes in the scanner proto-
col, hardware changes, or when combining data from multi-site studies, the
statistical analysis becomes problematic. In this scenario, the goal of this
paper is to develop a unified statistical solution to the problem of systematic
variations in statistical image analysis. Based in part on recent literature
in harmonic analysis on diffusion maps, we propose an algorithm which
compares operators that are resilient to the systematic variations. These op-
erators are derived from the empirical measurements of the image data and
provide an efficient surrogate to capturing the actual changes across images.
To evaluate the proposed ideas, we present various experimental results on
detecting changes in simulations as well as show how the method offers im-
proved statistical power in the analysis of real longitudinal PIB-PET imag-
ing data acquired from participants at risk for Alzheimer’s disease (AD).

High level description of the framework. Consider two unknown la-
tent functions f and f ′, and let α and β denote two parameters such that
they modify the form of the function. Then, we are provided with the mea-
surements, fα and f ′

β
, i.e., both the parameter and the function changes. It is

clearly not possible to verify the true difference between the latent functions,
unless we also know the relationship between the transformations induced
by α and β . Assume that an oracle provides us an operator T with the in-
teresting property that it is invariant to the parameter space P from which
α and β are drawn. That is, if we construct a pair of operators from the
empirical measurements of fα and f ′

β
, the operators will reflect the true dif-

ference between f and f ′. Since the operator T only offers invariances to
the parameter space P , in this case, the operators T fα

and T f ′
β

cannot be
compared. Nonetheless, these operators provide a mapping to two different
spaces, S fα

and S f ′
β
, since f and f ′ are distinct. Because of the invariance to

P , if we plug a known function (such as an impulse function) at all locations
in the original space into the two operators, we will obtain its transformed
representations in S fα

and S f ′
β
. Once these transformed forms of the impulse

functions are mapped from S f ′
β

to S fα
, we can calculate the distance [1].

Key Idea. We assume that the two images fα and f ′
β

are spatially reg-
istered so that the only variations in the measurements comes from the pa-
rameters, α,β ∈ P . We also assume that the relationship of measurements
at each grid point to measurements at other grid points in the same image is
preserved and is independent of changes in the parameter space, P . When
we place a unit energy at location p, the propagation of the energy will now
show different patterns for the two image-derived operators: capturing the
difference between those patterns is an excellent surrogate for detecting the
difference between the two original functions f and f ′.

Interestingly, the process of constructing an operator and applying it on
a δ function is the same as the implementation of a mother wavelet func-
tion. In a graph setting (with N number of nodes), this mother wavelet is
constructed using bases from spectral graph theory. Let λ , and χ denote the
eigenvalues and eigenvectors from a graph Laplacian, then the actual mother
wavelet ψs,p at scale s centered at p is realized by a delta function δp as

ψs,p(q) = T s
g δp =

N−1

∑
l=0

g(sλl)χl(p)χl(q) (1)

where g() is a band-pass filter from a filter bank [2]. Here, a wavelet function
ψs,p(q) can be viewed as a kernel function as ψs(p,q), defining a relation-
ship between vertex p and q. For our application, it is used to define Wavelet
Kernel Distance (WKD) ds(p,q) at scale s, a measure between two points p
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Figure 1: Results from NASA Earth Observatory images. Left: image from 2013,
Middle: image from 2014 (intensity transformed), Right: image changes using WKD.

Figure 2: The correlation between the PIB changes and the ratio of total τ-protein
and Aβ (1-42). The red-yellow and blue-light blue intensities indicate correlation
using WKD and SUVR images respectively in the range of [0.3 0.5].

and q defined as `2-norm of the wavelet density difference as

ds(p,q)2 =
N−1

∑
l=0

g(sλl)
2(χl(p)−χl(q))

2 (2)

It can be interpreted as if we were comparing the effect of the same wavelet
function dissipating from locations p and q to their neighbors by the wavelet
kernel function g(), thereby measuring the effect of the propagation.

Consider two individual graphs I and J, constructed using functions (or
images) fα and f ′

β
, where the number of vertices in each is N. Let λ I , λ J

and χ I and χJ denote the eigenvalues and eigenvectors from graph Lapla-
cians of I and J respectively. On these graphs, WKD between a vertex pI

from I and a vertex qJ on J is defined as

ds(pI ,qJ)2 =
N−1

∑
l1=0

g(sλ
I
l1)

2
χ

I
l1(p)2 +

N−1

∑
l2=0

g(sλ
J
l2)

2
χ

J
l2(q)

2 (3)

−2
N−1

∑
l1,l2=0

g(sλ
I
l1)χ

I
l1(p)g(sλ

J
l2)χ

J
l2(q)〈χ

I
l1 ,χ

J
l2〉

using wavelet kernel functions ψ I
s and ψJ

s .
Results. We applied our algorithm on synthetic images and for sta-

tistical analysis of longitudinal Pittsburgh compound B positron emission
tomography (PIB-PET) scans. Representative results are shown in Fig. 1
and 2. In Fig. 1, we show a result comparing two different satellite images
that cannot be compared directly due to image intensity transformation and
in Fig. 2, we show correlation between a well-known AD risk factor (i.e.,
ratio of total τ-protein and Aβ (1-42)) and subject age when a proper nor-
malization is unavailable. More experimental results are provided in the
main paper.
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