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We address the problem of 3D head pose estimation and facial landmark
localization using a commodity depth sensor such as Microsoft’s Kinect.
Our method is robust to noise, is rotation and translation invariant, and runs
on a frame-by-frame basis without the need for initialization. It can process
10 to 25 frames per second, depending on the desired accuracy, on a single
CPU core.

Our method consists of an offline training and an online testing phase.
Both phases rely on a novel triangular surface patch (TSP) descriptor. A
TSP is specified by any equilateral base triangle of a fixed size such that all
three vertices are on or very close to the 3D surface of the face. Given such
a triangle, the TSP consists of those points of the 3D surface of the face that
are above or below the triangle (see Figure 1(a,b)). Intuitively, a TSP is a
triangular patch of the 3D surface of a face. We create an efficient descriptor
of a TSP by discretizing it. The base triangle defining a TSP is subdivided
into smaller sub-triangles, and the descriptor consists of the average height
of the surface points above or below each sub-triangle. A TSP descriptor
thus consists of a small number (we use 25 in our experiments) of floats
representing the mean height for each sub-triangle. See Figure 2 for an
illustration of a TSP descriptor. TSPs are viewpoint-independent and robust
to changes in pose, scale (distance to camera), and resolution.

In the training phase, a large number of TSPs are sampled from syn-
thetic 3D heads, and a descriptor for each TSP is stored in a library along
with 3D displacement vectors from the centroid of the base triangle to the
centroid of the head and to facial landmarks (see Figure 1(c)). In the testing
phase, TSPs are sampled from a 3D point cloud computed from an acquired
depth image. The nearest neighbors to each TSP’s descriptor are found in
the training library using a fast approximate nearest neighbor method [3].
The nearest TSPs in the training library are used to estimate the 3D head
pose and facial landmark positions.

Each sampled TSP gives an estimate of the 3D head pose as well as the
3D locations of the head centroid and facial landmark points. To get the
3D head pose estimate, we compute the rotation matrix R that rotates the
nearest-neighbor TSP from the training library to the test TSP. This rotation
matrix R is the estimate of head orientation. The estimated landmark po-
sitions are computed by transforming the landmark position displacements
from the nearest-neighbor TSP according to the rotation R and adding the
centroid of the sampled test triangle. The head centroid location is estimated
similarly to the landmark locations.

To get a final estimate of head pose and landmark positions given all of
the estimates from sampled TSPs, we use an algorithm that jointly clusters
in both head orientation space, SO(3), and head centroid space, R3. The
basic idea is to only use estimates from TSPs for which the estimated pose
angles and the estimated head centroid locations form a cluster in both of
their respective spaces.

We tested our algorithm on the Biwi Kinect Head Pose Database [2]
and compared against the results of Fanelli et al. [2] (see Figure 3) and
Baltrusaitis et al. [1]. Our accuracy in terms of both 3D head pose angles
and 3D facial landmark positions show significant improvement over these
previous algorithms while maintaining similar (real-time) speed.
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Figure 1: (a) An equilateral base triangle sampled from the vertices, S, of
a 3D head model. The light blue part of the base triangle is occluded by
the face’s surface, while the dark blue part occludes the face. (b) The corre-
sponding triangular surface patch (TSP), shown in red, consists of the points
in S that lie above or below the base triangle. (c) A base triangle (shown in
blue) sampled from a training head model, along with the vectors c

i

,u
i1,

and u
i2, which originate at the centroid of the base triangle and point to the

head model’s centroid (blue dot) and two facial landmarks (yellow dots),
respectively.
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Figure 2: (a) Subdivision of the base triangle into k = 4 sub-triangles per
side results in a total of k

2 sub-triangles. (b) Each TSP point (black dot)
belongs to the sub-triangle in which it would lie if it were projected perpen-
dicularly onto the base triangle. (c) Visualization of the descriptor for the
TSP shown in Figure 1(b), using k = 5 sub-triangles per side. Each sub-
triangle is displaced above or below the base triangle and colored according
to the mean height of the points it contains.

Method Nose tip Direction Yaw Pitch Roll Time
(mm) (�) (�) (�) (�) (ms)

Ours (4= 200) 6.8 3.2 2.5 1.8 2.9 75.1
Ours (4= 100) 8.6 4.4 3.5 2.5 4.2 38.9
[2] Trained on Biwi 12.2 5.9 3.8 3.5 5.4 44.7
[2] Synthetic Training 19.7 8.5 6.0 4.8 5.8 44.0

Figure 3: Position and orientation errors on Biwi Kinect Head Pose
Database.


