
Learning To Look Up:
Realtime Monocular Gaze Correction Using Machine Learning

Daniil Kononenko, Victor Lempitsky
Skolkovo Institute of Science and Technology (Skoltech).

The problem of gaze in videoconferencing has been attracting researchers
and engineers for a long time. The problem manifests itself as the inability
of the people engaged into a videoconferencing (the proverbial “Alice” and
“Bob”) to maintain gaze contact. The lack of gaze contact is due to the dis-
parity between Bob’s camera and the image of Alice’s face on Bob’s screen
(and vice versa).

Input “Ground truth” Our output
Figure 1: The input and the “ground truth” frames (from the Columbia gaze
dataset [3]) have ten degrees difference in gaze direction. The result of
our method is shown on the right (redirecting ten degrees upwards). The
computation time is 8 ms on a single laptop core (excluding feature point
localization).

We revisit the problem of gaze correction and present a solution based
on supervised machine learning. At training time, our system observes pairs
of images, where each pair contains the face of the same person with a fixed
angular difference in gaze direction. It then learns to synthesize the second
image of a pair from the first one. After learning, the system becomes able
to redirect the gaze of a previously unseen person by the same angular dif-
ference as in the training set (10 or 15 degrees upwards in our experiments).
Unlike many previous solutions to gaze problem in videoconferencing, ours
is purely monocular, i.e. it does not require any hardware apart from an in-
built web-camera of a laptop. Being based on efficient machine learning
predictors such as decision forests, the system is fast (runs in real-time on a
single core of a modern laptop). In the paper, we demonstrate results on a
variety of videoconferencing frames and evaluate the method quantitatively
on the hold-out set of registered images. The supplementary video at the
project website shows example sessions of our system at work.

We do not attempt to synthesize a view for a virtual camera, as in
[1], or synthesize virtual view of the face only and stitch with the original
videostream, as in [2]. Instead, our method emulates the change in the ap-
pearance resulting from a person changing her/his gaze direction by a certain
angle (e.g. ten degrees upwards), while keeping the head pose unchanged.

We use an off-the-shelf real-time face alignment library to localize facial
feature points. For each eye, we compute a loose axis-aligned bounding box.
At test time, for every pixel (x,y) in the bounding box we determine a 2D eye
flow vector (u(x,y),v(x,y)). The pixel value at (x,y) is then “copy-pasted”
from another location in the input image that is determined by using the eye
flow vector (u,v) as an offset.

The main variant of our system computes the appropriate eye flow vec-
tor using a special kind of randomized decision tree ensembles. The vector
is determined based on the appearance of the patch surrounding the pixel,
and the location of the pixel w.r.t. the feature points.

In more detail, a pixel is passed through a set of specially-trained en-
semble of randomized decision trees (eye flow trees, Figure 2). Two kinds
of tests are applied to a pixel. An appearance test compares the difference
of two pixel values in some color channel with the threshold. A location test
compares the distance to some of the feature points in one of two dimen-
sions with the threshold. To handle scale variations, we rescale the training
images to the same characteristic size, and we rescale the offsets in the tree
tests and the obtained eye flow vectors by an appropriate ratio at test time.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

Figure 2: Processing of a pixel (green square) at test time in an eye flow
tree. The pixel is passed through an eye flow tree by applying a sequence
of tests. Once a leaf is reached, this leaf defines a matching of an input
pixel with other pixels in the training data. The leaf stores the map of the
compatibilities between such pixels and eye flow vectors. The system then
takes the optimal eye flow vector and uses it to copy-paste an appropriately-
displaced pixel in place of the input pixel into the output image.

In an eye flow tree, each leaf stores the map of compatibilities between
the set of training examples and each possible offset (eye flow vector). We
then sum together the compatibility maps from several trees, and pick the
eye flow vector (u,v) that minimizes the aggregated map.

At learning phase we assume that a set of training image pairs (I j,O j)
is given. We assume that within each pair, the images correspond to the
same head pose of the same person, same imaging conditions, etc., and
differ only in the gaze direction. We also rescale all pairs based on the
characteristic radius of the eye in the input image. Eye flow trees are trained
in a weakly-supervised manner, as each training sample does not include the
target vectors (u(x,y),v(x,y)). The goal of the training is to build a tree that
splits the space of training examples into regions, so that for each region
replacement with the same eye flow vector (u,v) produces good result for
all training samples that fall into that region.

We also investigate gaze redirection based on an image-independent
flow field — a simple variant of our system, where each eye flow vector
is independent on the test image content and is based solely on the rela-
tive position in the estimated bounding box. So, in the learning phase we
consider all training examples for a given location (x,y) and find the off-
set minimizing the compatibility score. The two variants are compared in
Figure 3.

Figure 3: Redirection by 15 degrees. Left to right: the input, the “ground
truth”, the output of the eye flow forest, the output of the image-independent
field.

[1] Antonio Criminisi, Jamie Shotton, Andrew Blake, and Philip HS Torr.
Gaze manipulation for one-to-one teleconferencing. In ICCV, 2003.

[2] Claudia Kuster and et al. Gaze correction for home video conferencing.
In SIGGRAPH Asia, 2012.

[3] Brian A Smith, Qi Yin, Steven K Feiner, and Shree K Nayar. Gaze
locking: passive eye contact detection for human-object interaction. In
ACM Symposium on User interface Software and Technology, 2013.

http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

