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Material classification is an important area of research in computer vi-
sion. Typical algorithms use color and texture information for classification[2].
Thermal (long-wave infrared) imagery has the benefit of relative invariance
to color changes, invariance to lighting conditions, and can even work in the
dark. However, it has not been heavily studied for material classification.
[5] uses near infrared (NIR) to get a more intrinsic image of the material
sample. [4] uses mid wave infrared for paper and board identification for
food packaging. [3] measures thermal conductivity of materials using tac-
tile feedback; a robot touches the material with a probe. None of these works
user thermal (long-wave infrared) imagery.

We develop a set of features that describe water permeation and heat-
ing/cooling properties, which are easy to see in thermal imagery but not in
traditional color imagery. An overview of our methods can be seen in Fig-
ure 1. There are a few interesting features that can be obtained for water
permeation such as the rate of permeation of the water into the material and
the shape characteristics of the permeation. We generalize these features by
creating a 3D model which we call the CHAMP (CHAracteristic Model of
Permeation). The CHAMP can be understood by visualizing each image in
a video sequence as a 2D slice along the Z dimension. It implicitly contains
the shape of the water permeation as well as the growth rate (i.e. curvature
of the model).

Once the models are created, a metric to compare the models is needed.
We chose to compute a Fast Fourier Transform of a modified binned spher-
ical mapping of the CHAMP. This is a robust method since it is invariant to
rotations and translations between CHAMPs and is fast to compute.

Before performing the spherical mapping, we first center the CHAMP
around its centroid. Next, we map (X ,Y,Z) in the Cartesian coordinate sys-
tem to (r,θ ,φ) in the spherical coordinate system using simple trigonomet-
ric equations. These spherical points are binned into a 2D histogram image.
The intensity values of the histogram image are the r values multiplied by
cos(φk), the rows are varying θ , and the columns are varying φ . This is
performed by

SPH(x,y) = cos(φk)∗avg(rk) (1)

{k | θk± ε = x∗binx−π,

φk± ε = y∗biny−
π

4
},

where binx and biny are the desired bin size. Each row corresponds to a slice
of the model, and the values are the distances from the centroid of that slice
to the edge of the model.

Next, we compute the FFT of these 2D histogram images and shift the
zero-frequency component to the center. Since the only misalignment of the
spherical maps will be in the horizontal direction, we can ignore the phase
and take the amplitude of the FFT image. This allows our FFT images to
be aligned even if the CHAMPs are misaligned due to rotations and transla-
tions.

Figure 1: The proposed method consists of two types of features – water
permeation and a heating/cooling cycle.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

For heating/cooling, we describe two features. Our first attempt of fea-
ture extraction of heating and cooling is quite simple. For each image in
an infrared video stream, we sample five patches. For each patch, the mean
temperature over the patch is plotted over time to give a temperature curve
that should, ideally, be unique for each material. Patches were chosen over
using all pixels to smooth over noise and to speed up the processing time.
To account for change in room temperature over the course of a day, we
align the starting temperatures of each curve when comparing across mate-
rials, i.e. for materials x and y perform T ′xk(t) = Txk(t)+ [Tyk(1)−Txk(1)].
Here Txk(t) is the temperature at time t for material x at patch k. Euclidean
distance is used as a metric for comparison.

The second feature solves the heat equation [1] for two parameters α

and β . The heat equation [1] is a parabolic partial differential equation that
describes the distribution of heat over time. We augment the standard heat
equation to more closely describe our physical setup by adding a second
term as in

dI
dt

= α∇
2I +βS(t), (2)

where α,β are unknown constants, and S is a function which describes how
heat is applied. In our setup, a heat lamp was the source of heat in the
scene, and its temperature changed over time. To calculate S, we sampled
the temperature of the heat lamp over time using an infrared thermometer,
and fit a piecewise polynomial to the sample temperatures. Once S is known,
we can calculate α,β by setting up an overconstrained linear system and
applying a Moore-Penrose pseudoinverse.

In our experiments we used a Xenics Gobi 640 GigE uncooled long
wave infrared camera, which has a resolution of 640x480 and has a 50mC
sensitivity at 30◦C. The materials we used were broken up into 5 coarse
classes: cloth, wood, paper, plastic foams, and metal. Each coarse class was
further broken up into a total of 21 subclasses. For each type of material, we
imaged 4 samples; this gives a total of 84 material samples. We tested a few
variations including: “capping” the CHAMP, using aligned spherical maps
without FFT, and using aligned spherical maps without the cos(φ) term in
Eq. 1. Our results show up to 96% accuracy for the fine grain classification,
and 100% when combining water permeation and heating/cooling features.
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