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In this paper, we develop a fast solver of low rank representation (LRR) [3]
called FaLRR, which achieves order-of-magnitude speedup over existing
LRR solvers, and is theoretically guaranteed to obtain a global optimum.

LRR [3] has shown promising performance for various computer vision
applications such as face clustering. Let X = [x1, . . . ,xn] ∈ Rd×n be a set
of data samples drawn from a union of several subspaces, where d is the
feature dimension and n is the total number of data samples. LRR seeks
a low-rank data representation matrix Z ∈ Rn×n such that X can be self-
expressed (i.e., X = XZ) when the data is clean. Considering that input
data may contain outliers (i.e., some columns of X are corrupted), the LRR
problem can be formulated as,

min
Z,E

‖Z‖∗+λ‖E‖2,1 s.t. X = XZ+E, (1)

where λ is a tradeoff parameter and E ∈ Rd×n denotes the representation
error. The nuclear norm based term ‖Z‖∗ acts as an approximation of the
rank regularizer, and the `2,1 norm based term ‖E‖2,1 encourages E to be
column-sparse.

Regarding optimization, several algorithms [2, 3, 4] were proposed to
exactly solve LRR. Moreover, to efficiently obtain an approximated solution
of LRR, a distributed framework [5] was developed. However, the existing
algorithms are usually based on the original formulation in (1) or a similar
variant [4], which are two-variable problems with regard to the original data
matrix. In this paper, we develop a fast LRR solver named FaLRR, which
is based on a new reformulation of LRR as an optimization problem with
regard to factorized data (which is obtained by skinny SVD on the original
data matrix).

Reformulation. Specifically, we study a more general formulation of
LRR as follows,

min
Z∈Rn×m,E∈Rd×m

‖Z‖∗+λ‖E‖2,1 s.t. XD = XZ+E (2)

which includes (1) as a special case. Let r denote the rank of X. More-
over, let us factorize X via the skinny singular value decomposition (SVD):
X = UrSrV′r, where Ur ∈Rd×r and Vr ∈Rn×r are two column-wise orthog-
onal matrices that satisfy U′rUr = V′rVr = Ir, Sr ∈Rr×r is a diagonal matrix
defined as Sr = diag([σ1, . . . ,σr]

′), in which {σi}r
i=1 are the r positive sin-

gular values of X sorted in descending order. Based on the definitions above,
we present the reformulation by the following theorem:

Theorem 1 Let W∗ denote an optimal solution of the following problem,

min
W∈Rr×m

‖W‖∗+λ‖Sr(V′rD−W)‖2,1 . (3)

Then, {Z∗,E∗}, defined as Z∗ = VrW∗ and E∗ = XD−XVrW∗, is an op-
timal solution of the problem in (2). In particular, ‖Z∗‖∗ = ‖W∗‖∗ and
‖E∗‖2,1 = ‖Sr(V′rD−W∗)‖2,1 always hold, implying that the two problems
in (2) and (3) have equal optimal objective values.

Optimization. In terms of optimization, we rewrite the problem in (3)
as follows by introducing another variable Q ∈ Rr×m:

min
W,Q∈Rr×m

‖W‖∗+λ‖SrQ‖2,1 s.t. W+Q = V′rD, (4)

and develop an efficient algorithm based on the alternating direction method
(ADM) [1, 2], in which both resultant subproblems can be solved exactly.
The corresponding augmented Lagrangian [1] w.r.t. (4) is

Lρ (W,Q,L)

= ‖W‖∗+λ‖SrQ‖2,1 +
〈
L,V′rD−W−Q

〉
+

ρ

2
‖V′rD−W−Q‖2

F ,
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Figure 1: (a) the running time w.r.t. λ and (b) the resultant objective value
w.r.t. λ , for solving LRR on the ExtYaleB dataset. The positions of markers
indicate the optimal parameters for the three LRR solvers, respectively.

where L ∈ Rr×m is the Lagrangian multiplier and ρ > 0 is the penalty pa-
rameter. By employing ADM, we iteratively update the variables {W,Q},
the Lagrange multiplier L and the penalty parameter ρ until convergence.

In particular, the subproblem for updating W is in the form of

min
W∈Rr×m

‖W‖∗+
ρ

2
‖W−G‖2

F ,

where G ∈ Rr×m is constant w.r.t. W. To efficiently solve this subproblem,
we propose a tentative strategy, which is motivated by our experimental
observations and theoretical analysis.

On the other hand, the subproblem for updating Q is in the form of

min
Q∈Rr×m

λ‖SrQ‖2,1 +
ρ

2
‖Q−C‖2

F ,

where C ∈ Rr×m is constant w.r.t. Q. We show that such problem can be
efficiently solved with O(rm) complexity.

Overall, the total time complexity of each iteration for our algorithm
is O(rmmin(r,m)+ rm). Particularly, for solving the LRR problem in (1)
where m = n and r ≤ n, our time complexity per iteration is O(nr2 + nr).
Moreover, we observe that the total number of iterations of our algorithm is
often relatively small in our experiments.

Incorporation into a distributed framework Our algorithm can be
readily incorporated in the distributed framework [5] called DFC-LRR, to
further improve the efficiency.

Experiments Extensive experiments on synthetic and real-world dataset-
s demonstrate that our FaLRR achieves order-of-magnitude speedup over
existing LRR solvers. In Figure 1, we take the ExtYaleB dataset as an ex-
ample to compare our FaLRR with the LRR solvers in [4] and [2] in terms of
the running time and the resultant objective value. Moreover, the efficiency
can be further improved by incorporating our algorithm into DFC-LRR.
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