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Motivation. Comparing patches across images is probably one of the
most fundamental tasks in computer vision and image analysis, that has
given rise to the development of many hand-designed feature descriptors
over the past years, including SIFT, that had a huge impact in the computer
vision community. Yet, such manually designed descriptors may be unable
to take into account in an optimal manner all the different factors that can
affect the final appearance of image patches. On the other hand, nowadays
one can easily gain access to (or even generate using available software)
large datasets that contain patch correspondences between images [6]. This
begs the following question: can we make proper use of such datasets to
automatically learn a similarity function for image patches ? Our goal in
this work is to affirmatively address the above question.

Contributions. More specifically, in this paper we succeed in achieving
the following goals:

(i) We learn from scratch (i.e., from raw image patches and without any
manually-designed features) a general similarity function for patches that
implicitly takes into account various types of transformations and effects.
To that end, inspired by recent advances in neural architectures and deep
learning, we choose to represent such a function in terms of a deep convo-
lutional neural network [2].

(ii) We explore and propose a wide variety of different neural network
models, highlighting at the same time network architectures that offer im-
proved performance.

(iii) We show that such architectures outperform the state-of-the-art by
a large margin and lead to feature descriptors for images patches with much
better performance than manually designed descriptors (e.g, SIFT, DAISY)
or other learnt descriptors such as [5]. Importantly, due to their convolu-
tional nature, the resulting descriptors are very efficient to compute even in
a dense manner.

Models. Given that there exist several ways in which patch pairs can be
processed by the network or in which the information sharing can take place,
we are also interested in addressing the issue of what network architecture
is best to be used in a task like this. To that end, we explore many different
variations on the architecture of the network such as: (i) siamese (this type
of network resembles the idea of having a descriptor, in which case there are
two branches – one per patch – in the network that share exactly the same ar-
chitecture and the same set of weights), (ii) pseudo-siamese, (iii) 2-channel
(where, unlike previous models, there is no direct notion of descriptor in
the architecture and the network proceeds directly with the similarity esti-
mation), (iv) central-surround two-stream (where we modify the network
to consist of two separate streams, central and surround, which enable a
processing in the spatial domain that takes place over two different resolu-
tions), (v) spatial-pyramid-pooling (SPP), and (vi) deep networks. Many of
the above variations can be used in conjunction with each other, thus leading
to a wide range of models for comparing patches. Based on these, we draw
interesting conclusions about which architectural choices help in improving
performance in practice.

Experiments. We applied our approach on several problems and bench-
mark datasets, showing that it significantly outperforms the state-of-the-art.

For the first evaluation of our models, we used the standard benchmark
dataset from [1] that consists of three subsets, Yosemite, Notre Dame, and
Liberty, each of which contains more than 450,000 image patches (64 x 64
pixels), used to produce 500,000 ground-truth feature pairs for each dataset,
with equal number of positive (correct) and negative (incorrect) matches.
For evaluating our models on this dataset we use the evaluation protocol of
[1] and report FPR95 on each of the six combinations of training and test
sets. All our models outperform the previous state-of-the-art, highlighting
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a combination of 2-channel and central-surround two-stream architectures
which managed to outperform it by a large margin, achieving 2.45 times
better score than descriptors learnt with convex optimization [5] and 6.65
times better score than SIFT.

For wide baseline stereo evaluation we used Stretcha dataset [7]. The
photometric cost is computed with each network, then MRF-based global
optimization method is applied. All our models consistently outperform
state-of-the-art wide-baseline stereo matching descriptor DAISY [7] both
quantitatively and qualitatively.

We also tested our models on Mikolajczyk dataset for local descriptors
evaluation [4]. We used MSER to detect feature points and computed match-
ing scores with our networks and SIFT. For siamese networks we speed up
matching by computing descriptors and then using l2 distance matching or
top decision network. All our networks outperform SIFT in terms of mAP
score. Both 2-channel (including central-surround two-stream and deep ver-
sions) and SPP networks show especially good results.
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Figure 1: 2-channel (left) and siamese-two-stream (right) architectures.
Color code used: cyan = Conv+ReLU, purple = max pooling, yellow =
fully connected layer (ReLU exists between fully connected layers as well).

Train Test 2ch-2stream 2ch siam-2stream siam-2stream-l2 [5]
Yos ND 2.11 3.05 5.29 5.58 6.82
Yos Lib 7.2 8.59 11.51 12.84 14.58
ND Yos 4.1 6.04 10.44 13.02 10.08
ND Lib 4.85 6.05 6.45 8.79 12.42
Lib Yos 5 7 9.02 13.24 11.18
Lib ND 1.9 3.03 3.05 4.54 7.22

mean 4.19 5.63 7.63 9.67 10.38
mean(1,4) 4.56 5.93 8.42 10.06 10.98

Table 1: Performance of several models on benchmark [1].
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Source code and models are available online at http://imagine.enpc.fr/
~zagoruys/deepcompare.html
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