
Simultaneous Time-of-Flight Sensing and Photometric Stereo with a single ToF Sensor

Changpeng Ti1, Ruigang Yang1, James Davis2, Zhigeng Pan3

1University of Kentucky. 2University of California, Santa Cruz. 3Hangzhou Normal University.

Time-of-Flight (ToF) cameras based on phase-shift (such as PMD [3], Swis-
sRanger [2]) take four snapshots to generate a metric depth map. In this
paper, we develop novel techniques to allow Phase-shift-based ToF cameras
to measure both metric distance and surface normal.

Our method uses four LED sources placed away from the imaging sen-
sors, as shown in Figure 1. We illuminate the scene with these four lights,
one at a time. Based on four phase images from such a distributed light
setup, new algorithms are developed to recover both the surface normal and
the distance for each pixel.

The classic ToF model requires that (1) the extra phase delay caused
by the distance between the light source and the camera is negligible, and
(2) pixels in the four phase images share the same intensity value. In our
distributed light setup, neither condition remains true.

To tackle this problem, we explicitly model the phase delay caused by
light positions as an unknown and use an iterative optimization scheme to
solve it as well as the phase delay caused by scene depth.

One can use the classic formula to generate an initial phase delay esti-
mate, and use the light source positions to perform further iterative refine-
ments. In each iteration, a new phase delay φ ′ is estimated based on the
current φ . Given the unit camera ray r, and the light positions Li, where
i = {0,1,2,3} is the index of the light sources, one can write the phase de-
lay αi caused by the light source positions as{

d = c·φ
4π· fmod

αi = (||d · r−Li||−d) · 2π· fmod
c

(1)

The relation between the phase delay φ ′ due to depth and the phase delay α

due to light source positions can be written as
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where A is the amplitude of the ToF autocorrelation function (ACF), I is the
value of the ACF, and Imphase and Imintensity are the intensity values in the
phase and intensity images respectively. This expands to (in matrix form)
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Acosφ and Asinφ can be solved in the least-square sense in this overdeter-
mined system. φ ′ is then estimated as

φ
′ = arctan(

Asinφ ′

Acosφ ′
) (4)

The process from Eq. 1 to Eq. 4 is repeated until ||φ ′− φ || is smaller than
a threshold, or when the number of iterations reaches a limit. Upon conver-
gence, we will obtain a refined depth map of the scene.

The Photometric Stereo method estimates the surface normal N by solv-
ing a system based on the Lambertian assumption. With point light sources,
the light direction vectors need to be calculated for every pixel. Similar to
the work by Clark [1], we further use a quadratic term to model light attenu-
ation. Assuming the light source is infinitely small, the Lambertian shading
equation can be rewritten as (in matrix form)

V>0,i
V>1,i
V>2,i
V>3,i

 · kdNi =


I0 · ||L0−Di||2
I1 · ||L1−Di||2
I2 · ||L2−Di||2
I3 · ||L3−Di||2

 (5)

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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Figure 1: (Left) overview of our depth enhancenemt framework. (Right)
illustrations of our novel capturing setup that consists of a ToF sensor and
four point light sources.

where Vk,i = Lk−Di represents light direction from the k-th light to the i-th
pixel, and Di represents the 3D coordinates estimated by Eq. 4.

The position information from range map and the surface normal from
Photometric Stereo is combined using a framework similar to [4]. In their
approach, they iterative refine the position and the normal. During the posi-
tion refinement step, the following objective function is minimized

E = ∑
i j

µi j(Di j−D0
i j)
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where D0
i j and N0

i j are the depth and normal, which are obtained via dis-
tributed ToF sensing (Eqs. 1∼4) and Photometric Stereo (Eq. 5). {µi j} are
per-pixel weights and ∂D

∂u and ∂D
∂v are derivatives of the depth map along the

image grid.
With small and low-cost changes to the hardware, our sensor fusion

pipeline leads to much improved depth map in terms of metric accuracy and
surface details. We demonstrate the capability of our novel hardware/software
system with a number of quantitative and qualitative experiments. Looking
into the future we hope to explore a multi-light multi-ToF-sensor setup to
further improve the quality of the depth map and allow the system to scale
up.
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