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We tackle the problem of estimating the 3D pose of an individual’s up-
per limbs (arms+hands) from a chest mounted depth-camera. Importantly,
we consider pose estimation during everyday interactions with objects. Pre-
vious work for egocentric hand analysis tends to rely on local 2D features,
such as pixel-level skin classification [1, 2] or gradient-based processing of
depth maps with scanning-window templates [3]. Our approach follows in
the tradition of [3], who argue that near-field depth measures obtained from
a egocentric-depth sensor considerably simplifies hand analysis. In egocen-
tric views, hands and arms are observable within a well defined volume in
front of the camera that we call an egocentric workspace.

Contributions: We describe a new computational architecture that uses
global egocentric views, volumetric representations, and contextual mod-
els of interacting objects and human-bodies. Rather than detecting hands
with a local (translation-invariant) scanning-window classifier, we process
the entire global egocentric view (workspace) in front of the observer (Fig. 1).
Hand appearance is not translation-invariant due to perspective effects and
kinematic constraints with the arm. To capture such effects, we build a li-
brary of synthetic 3D egocentric workspaces generated using real capture
conditions. We animate a 3D human character inside virtual scenes with
objects, and render such animations with a chest-mounted camera whose in-
trinsics match our physical camera. We simultaneously recognize arm and
hand poses while interacting with objects by classifying the whole 3D vol-
ume using a multi-class Support Vector Machine (SVM) classifier. Recog-
nition is simple and fast enough to be implemented in 4 lines of code.

Synthetic exemplars. Let θ be a vector of arm joint angles, and let
φ be a vector of grasp-specific hand joint angles, obtained from a set of
Poser models covering different grasping hand postures (with/without ob-
jects). To enrich the core set of posed hands with additional translations and
viewpoints, we take a rejection sampling approach: we fix φ parameters to
respect the hand grasps and add small perturbations to arm joint angles:

θ
′
i = θi + ε where ε ∼ N(0,σ2).

Importantly, this generates hand joints p at different translations and view-
points, correctly modeling the dependencies between both. For each per-
turbed pose, we render hand joints using a forward kinematic chain and keep
visible poses (keypoint (u,v) coordinates lie within the image boundaries).

Associated with each pose, we construct a depth map by representing
each rigid limb with a dense cloud of 3D vertices {ui}, written in a egocen-
tric (camera) coordinate frame (Fig. 1.a). We render this dense cloud using
forward kinematics, producing a set of points {pi}= {(px,i, py,i, pz,i)}. We
define a 2D depth map z[u,v] by ray-tracing:

z[u,v] = min
k∈Ray(u,v)

||pk|| (1)

where Ray(u,v) denotes the points on the ray passing through pixel (u,v).
Perspective-aware binary depth features: Let us choose spherical

bins F(u,v,w) such that they project to a single pixel (u,v) in the depth
map. This allows one to compute the binary voxel grid b[u,v,w] by simply
“reading off” the depth value for each z(u,v) coordinates, quantizing it to z′,
and assigning 1 to the corresponding voxel:

b[u,v,w] =
{

1 if w = z′[u,v]
0 otherwise

(2)

This results in a sparse volumetric voxel feature visualized in Fig. 1.b.
Once a depth measurement is observed at position b[u′,v′,w′] = 1, all voxels
behind it are occluded for w≥w′. We define such occluded voxels to be “1”.
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Figure 1: Egocentric workspaces. We directly model the observable ego-
centric workspace in front of a human with a 3D volumetric descriptor,
extracted from a 2.5D egocentric depth sensor. We propose an efficient
pipeline which 1) generates synthetic workspace exemplars for training us-
ing a virtual chest-mounted camera whose intrinsic parameters match our
physical camera (a), 2) computes perspective-aware binary depth features
on this entire volume (in the example visualized in (b), the volume is dis-
cretized into 24× 32× 35 bins) and 3) recognizes discrete arm+hand pose
classes through a sparse multi-class SVM (c). This computational architec-
ture can be used to accurately predict shoulder, arm, hand poses, even when
interacting with objects.

Global classification: We use a linear SVM for multi-class classifica-
tion of upper-limb poses. However, instead of classifying local scanning-
windows, we classify global depth maps quantized into our binarized depth
feature b[u,v,w] from (2). Global depth maps allow the classifier to exploit
contextual interactions between multiple hands, arms and objects. In partic-
ular, we find that modeling arms is particularly helpful for detecting hands.
We cluster our dataset and train a one-vs-all SVM classifier for each re-
sulting class k. We obtain K weight vectors which can be re-arranged into
Nu×Nv×Nw tensors βk[u,v,w]. The score for class k is then obtained by a
simple dot product of its weights and our binarized feature b[u,v,w]:

score[k] = ∑
u

∑
v

∑
w

βk[u,v,w] ·b[u,v,w]. (3)

In Fig. 1.c, we show the weight tensor βk[u,v,w] for a particular pose cluster.
To increase run-time efficiency, we exploit the sparsity of our binarized vol-
umetric feature and jointly implement feature extraction and SVM scoring.
Since our binarized depth features do not require any normalization and the
classification score is a simple dot product, we can readily extract the feature
and update the score on the fly.

Results: We achieve state-of-the-art hand pose recognition performance
from egocentric RGB-D images in real-time (275 fps).
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