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We adopt Convolutional Neural Networks (CNN) as our parametric model
to learn discriminative features and classifiers for local patch classification.
They are able to produce satisfactory labeling results for visually dissimilar
pixels. However, CNNs struggle in visually similar pixels due to using their
limited context. As shown in Figure 1, the sand pixels are highly confused
with road and sidewalk pixels in a local view.

We propose to utilize global scene semantics to eliminate ambiguity of
local context, for example, the confusion between ‘road’ and ‘sand’ pixels
in Figure 1 can be easily removed if the “coast" scene is revealed. The
global scene constraint is achieved by adding a global potential to the energy
function. The energy function is formally written as:

E(X ,Y ) = ∑
i∈X

ΦI(Xi,Y j)+ΦG(X ,Y ) (1)

where ΦI(Xi,Y j) = −PI(Xi,Y j) is the unary potential function defined
as negative likelihood of pixel Xi being labeled as Y j by parametric CNN
model; ΦG(X ,Y ) is the global potential of image X taking labeling configu-
ration Y . Since it’s infeasible to model the huge labeling state of Y paramet-
rically (|L|N ) , a non-parametric approach like [2] is adopted to model the
global potential, which is defined as:

ΦG(X ,Y ) =−∑
i∈X

PS(X)
G (Xi,Y j) (2)

where S(X) is the similar exemplars of image X and PS(x)
G (Xi,Y j) is

global class likelihood of Xi labeled as Y j. By rewriting the energy function,
it gives us the following form:

E(X ,Y ) =−∑
i∈X

(PI(Xi,Y j)+PS(X)
G (Xi,Y j)) (3)

Therefore, the energy function can be interpreted as an integration of
beliefs from two sources: (1), Local belief: PI(Xi,Y j) measures the belief for

local context centering on pixel Xi; (2), Global belief: PS(X)
G (Xi,Y j) denotes

the belief for Xi from global scene view. The global belief is calculated in a
weighted K-NN manner:

PS(X)
G (Xi,Y j) =

∑k φ(Xi,Xk)δ (Y (Xk) = Y j)

∑k φ(Xi,Xk)

φ(Xi,X j) = exp(−α||xi− x j||)exp(−γ||zi− z j||)
(4)

where Xk is the k-th nearest neighbor of Xi among all the pixel features in
S(X), Y (Xk) is the ground truth label for pixel Xk; δ (Y (Xk),Y j) is an indi-
cator function; φ(Xi,Xk) measures the similarity between Xi and Xk, which
is defined over spatial and feature space; xi = F(Xi) denotes the CNN pixel
feature for Xi, zi is the normalized coordinate along the image height axis
and α,γ controls the belief exponential falloff.

Furthermore, we replace the softmax layer of previous CNN (CNN-
softmax) with a fully connected layer parameterized by W and fix the biases
to be zero, which serves as a Mahalanobis metric (M =W TW ). We call the
new network CNN-metric. In details, the Mahalanobis metric M =W TW is
learned by minimizing the loss function, which is formally written as:

L =
λ

2
||W ||2 + 1

2N ∑
i, j

g(xi,x j)

g(xi,x j) = max(0,1− `i, j(τ−||Wxi−Wx j||2))
(5)

where `i, j indicates whether two features have the same semantic la-
bel or not, and `i, j = 1 if Xi and X j are from the same class, or `i, j = −1
otherwise; τ(> 1) is the margin and λ controls the effect of regularization;
xi = F(Xi) is the feature representation for Xi and N is the number of fea-
tures. The objective function would enforce the pixel features from the same
semantic class to be close and stay within the ball with radius 1−τ , and en-
force data from different classes to be far away from each other by at least
1+ τ .

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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Figure 1: Motivation of our method: the parametric model can distin-
guish visually different pixels very well, but get confused for pixels that are
visually similar in local context. However, the local features can be disam-
biguated from global scene semantics. A more consistent labeling result can
be achieved by integrating their beliefs. The figure is best viewed in color.

Stanford Sift Flow
Multiscale convnet[1]† 78.8% (72.4%) -
Multiscale convnet[1]‡ - 67.9% (45.9%)

Plain CNN (133×133)[3] 79.4% (69.5%) 76.5% (30.0%)
Recurrent CNN (67×67) [3] 76.2%(67.2%) 65.5%(20.8%)

RCNN (133×133)[3] 80.2% (69.9%) 77.7% (29.8%)
[1]†+ CRF 81.4% (76.0%) 78.5% (29.4%)
[1]‡+ CRF - 72.3% (50.8%)

Ours CNN (65 × 65) 79.1% (70.1%) 74.6% (38.2%)
Ours Final(65× 65) 80.3% (70.9%) 79.8% (39.1%)

Ours Final(65×65, metric) 81.2% (71.3%) 80.1% (39.7%)
Table 1: Performance comparison with state-of-the-art methods. The num-
bers following the networks indicate the size of input context. The percent-
ages given outside and inside of parenthesis denote overall pixel accuracy
and average class accuracy respectively.

The quantitative results are presented in Table 1. In comparison with
other CNNs that are fed with richer context input, our integration model is
able to yield significantly better results that are comparable to state-of-the-
art. As evidenced by Table 1, our integration model is capable of signifi-
cantly boosting the qualitative results (global pixel accuracy) of CNN local
labeling by introducing global scene constraint: 2.1% and 5.0% global pixel
accuracy improvement for Stanford Background and Sift Flow benchmark
respectively. In the meantime, our method can also improve the average
class accuracy.
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