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Face alignment is a task to locate fiducial facial landmark points, such as eye
corners, nose tip, mouth corners, and chin, in a face image. Shape regression
has become an accurate, robust, and fast framework for face alignment [2,
4, 5]. In shape regression, face shape s = (x1,y1, · · · ,xp,yp)

>, that is a
concatenation of p facial landmark coordinates {(xi,yi)}p

i=1, is initialized
and iteratively updated through a cascade regression trees (CRT) as shown
in Figure 1. Each tree estimates the shape increment from the current shape
estimate, and the final shape estimate is given by a cumulated sum of the
outputs of the trees to the initial estimate as follows:

ŝT = ŝ0 +
T

∑
t=1

f t(xt ;θ
t), (1)

where T is the number of stages, t is an index that denotes the stage, ŝt is a
shape estimate, xt is a feature vector that is extracted from an input image
I, and f t(·; ·) is a tree that is parameterized by θ

t . Starting from the rough
initial shape estimate ŝ0, each stage iteratively updates the shape estimate
by ŝt = ŝt−1 + f t(xt ;θ

t).
The two key elements of CRT-based shape regression that impact to the

prediction performance are gradient boosting [3] for learning the CRT and
the shape-indexed features [2] which the trees are based. In gradient boost-
ing, each stage iteratively fits training data in a greedy stage-wise manner by
reducing the regression residuals that are defined as the differences between
the ground truth shapes and shape estimates. The shape-indexed features
are extracted from the pixel coordinates referenced by the shape estimate.
The shape-indexed features are extremely cheap to compute and are robust
against geometric variations.

Instead of using gradient boosting, we propose cascade Gaussian pro-
cess regression trees (cGPRT) that can be incorporated as a learning method
for a CRT prediction framework. The cGPRT is constructed by combining
Gaussian process regression trees (GPRT) in a cascade stage-wise manner.
Given training samples S = (s1, · · · ,sN)

> and Xt = (x1, · · · ,xN)
>, GPRT

models the relationship between inputs and outputs by a regression function
f (x) drawn from a Gaussian process with independent additive noise εi,

si = f (xi)+ εi, i = 1, · · · ,N, (2)

f (x) ∼ GP(0,k(x,x′)), (3)

εi ∼ N (0,σ2
n ). (4)

A kernel k(x,x′) in GPRT is defined by a set of M number of trees:

k(x,x′) = σ
2
k

M

∑
m=1

κ
m(x,x′), (5)

κ
m(x,x′) =

{
1 if τm(x) = τm(x′)
0 otherwise,

(6)

where σ2
k is the scaling parameter that represents the kernel power, and τ is

a split function takes an input x and computes the leaf index b ∈ {1, · · · ,B}.
Given an input x∗, distribution over its predictive variable f∗ is given as

f̄∗ =
N

∑
i=1

αik(xi,x∗), (7)

where α =(α1, · · · ,αN)
> is given by K−1

s S. Here, Ks is given by K+σ2
n IN ,

and K is a covariance matrix of which K(i, j) is computed from the i-th and
j-th row vector of X. Computation of Equation (7) is in O(N); however, this
can be more efficient as follows:

f̄∗ =
M

∑
m=1

ᾱ
m,τm(x∗), (8)
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Figure 1: A selected prediction result on the 300-W dataset using cGPRT.
The shape estimate is initialized and iteratively updated through a cascade
of regression trees: (a) initial shape estimate, (b)–(f) shape estimates at dif-
ferent stages of cGPRT.

where ᾱm,b is a predictive mean of the pseudo input that falls on leaf b of the
m-th tree and does not fall on the other trees. The cGPRT is constructed by
combining GPRTs in a stage-wise manner, and we propose a greedy stage-
wise learning method for cGPRT and show that the prediction in cGPRT can
be performed in the CRT framework.

Input features to cGPRT are designed through shape-indexed difference
of Gaussian (DoG) features computed on local retinal patterns [1] referenced
by shape estimates. The shape-indexed DoG features are extracted in three
steps: (1) smoothing face images with Gaussian filters at various scales to
reduce noise sensitivity, (2) extracting pixel values from Gaussian-smoothed
face images indexed by local retinal sampling patterns, shape estimates, and
smoothing scales, and (3) computing the differences of extracted pixel val-
ues. Smoothing scale of each local retinal sampling point is determined to
be proportional to the distance between the sampling point and the center
point. Thus, distant sampling points cover larger regions than nearby sam-
pling points, and this leads to increasing stability of the distant sampling
points against to shape estimate errors, while the nearby sampling points are
more discriminative with an accurate shape estimate. In a learning proce-
dure of cGPRT, this trade-off allows for each stage to select reliable features
based on the current shape estimate errors.

In experiments on the 300-W dataset [6], the proposed cGPRT with
shape-indexed DoG features achieves 5.71 mean error at 93 fps (accurate
configuration) and 6.32 mean error at 871 fps (fast configuration) which are
best performance compared with state-of-the-art methods.
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