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Most of the current calibration schemes solve for a globally optimal model

of the eye-device transformation by performing calibration on a per-user or

once-per-use basis. These schemes are impractical for real-world applica-

tions because they do not account for changes in calibration during the time

of use. In this paper, we present a novel, continuous, locally optimal cal-

ibration method for use with head-word devices. Our calibration scheme

allows a head-worn device to calculate a locally optimal eye-device trans-

formation by computing an optimal model from a local temporal window

of previous frames. In addition, we also proposed an automatic calibration

technique based on naturally occurring interest regions within user’s envi-

ronment which avoids user’s active participation.

Shape based eye tracking methods track portions of the eye anatomy

such as corneal reflection, pupil contour, and iris contour. Corneal reflec-

tion and pupil contour methods require infrared ray (IR) active illumination.

Our system contains a user-facing camera that is used to capture user’s eye

movement, 2 IR LEDs that are positioned beside the eye camera to produce

glints on the eye, and a scene facing camera that captures the user’s envi-

ronment. These cameras are calibrated and have non-overlapping views.

Our method (shown in Figure 1) estimates the user’s gaze from each pair

of frames received. With two glints location and the projected pupil center,

along with a coarse approximation of the physical parameters we estimate

the user’s gaze in coordinate system of user-facing camera.

User’s gaze is projected upon scene-facing camera’s image plane and

might contain some errors due to two reasons: 1) the user’s eye parame-

ters are initially unknown, and 2) the transformation between the eye and

the device and between the two cameras are only initial approximations.

To remedy this we performed an automatic calibration using naturally oc-

curring regions of interest found within the scene image. In recent years,

lot of work has been done to obtain better-quality saliency maps. Among

these GBVS [4], AWS [6], and ImgSig [5] usually exhibit the best perfor-

mance. Chen et al.[2] estimated the probability distribution of the eye pa-

rameters and eye gaze by combining saliency map with the 3D eye model.

Our method also uses a similar approach with differs from their incremental

learning framework. Our method is also motivated by Alnajar et al.[1] who

proposed auto-calibration of gaze estimators in an uncalibrated setup.

The Gullstrand model [3] is used in the geometric model-based gaze

estimation in our method. In this model, exterior corneal surface is ap-

proximated by a spherical convex mirror and optical axis is defined by 2

predefined rotations around the visual axis. Other details of the model is ex-

plained in the paper. It provides six main parameters to optimize over: the

corneal radius, Rc, the eye’s index of refraction, η1, the distance from the

pupil center to the corneal center of the cornea, dc,p, the distance between

the user-facing camera and the eye, do,r, and the two angular offsets used

to find the visual axis from the optic axis: α and β . In addition, given the

internal camera calibration the head-worn device has six degrees of freedom

itself: three dimensions of translation (x, y, and z) and three dimensions of

rotation (φ , θ , and ψ). Hence, the parameters of an eye-camera model at a

time t can be described as

Pt =< x,y,z,φ ,θ ,ψ,do,r,Rc,dc,p,η1,α,β > (1)

In order to optimize the eye-camera transformation, and to ensure that

our calibration remains causal, our system minimizes the sum of absolute

differences in the x and y directions between the projected visual axis, v j,

and the nearby salient interest point, s j , for all frames within a short window

of frames preceding time t. For a window of size k, the cost function, C(pt)
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Figure 1: The proposed framework for eye-camera parameters estimation
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can be written as:
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where dx(v j,s j) is the absolute difference in the x-direction and dy(v j,s j) is

the absolute difference in the y-direction for the projection of point s j on the

gaze direction v j.

We obtain the locally optimal solution, Pt , by solving the following

least-squares optimization problem:

Pt = argmin
pt

k

∑
j=1

C j(pt)
2 (3)

Optimizing over the eye-camera model parameters in the window yields

an estimate of the locally optimal parametric model, Pt , at time t. The re-

sulting parametric model effectively maximizes calibration accuracy while

minimizing gaze estimation error. Pt is further used as an initial estimate of

the model parameters for the next window. As k increases, the optimization

approaches a single globally optimal eye-camera model. Gaze estimation

error for our system was as low as 0.15-0.20 degrees running at 4-5 fps.

We concluded that our continuous, automatic calibration provides a more

realistic and better gaze estimation technique.
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