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Figure 1: Given a reference surface (a), our method establishes reliable cor-
respondences (c) between (a) and the input data (b). Correspondences guide
the deformation of (a) toward the results in (d). Note that instead of tracking,
our strategy detects user-specific shapes frame independently.

Human shape tracking consists in fitting a template model to temporal se-
quences of visual observations. It usually comprises an association step,
that finds correspondences between the reference model and the input data,
and a deformation step, that fits the model to the observations given the
correspondences. Most current approaches find their common ground with
the Iterative-Closest-Point (ICP) algorithm, which facilitates the association
step with local distance considerations. However, when large deformations
or outliers such as in Fig. 1(b) occur, discovering associations by only lo-
cal distances is particularly difficult. Ambiguous correspondences result
in erroneous solutions; the subsequent new associations are unreliable; er-
rors propagate, and eventually break the tracking process. In this paper, we
explore a discriminative alternative that leverages random forests to infer
correspondences in one shot [5]. As demonstrated in Fig. 1, our framework
‘detects’ rather than tracks the subject, preventing errors from accumulation.

More formally, let M= (M,TM) denotes a 3D reference mesh, where
M = {xv}Nv

v=1 ⊂ R3 are the locations of vertices v, and TM defines the tri-
angles. Evolving M typically amounts to parameterizing M as a function
of shape parameters Θ, namely, M(Θ). We adopt a surface deformation
framework that groups vertices into patches [1], and assign each of them
a rigid body motion. Thus, Θ is the collection of rigid body motion of all
patches, encoding the global shape of the surface. Given an observed visual
hull Yt = (Yt ,T t

Y ), where Yt = {yi}
Ny
i=1 ⊂ R3, the goal is to determine the

optimal Θ̂t such that Mt = M(Θ̂t) resembles Yt as much as possible. It
typically boils down to two sub-problems:

1. finding correspondence pairs C = {(i,v)} between the vertex sets of
Y and the vertex sets of M, and

2. minimizing an energy E that describes the discrepancies between ver-
tices in C: Θ̂ = argminΘ E(Θ;C).

Our primary objective in this paper is to improve the first part. ICP-based
generative approaches [1, 2] alternate between these two steps, refining Ct

and Θt iteratively. The drawback however, is the requirement of close ini-
tializations (Mt−1 has to be close to Yt ), and the slow convergence.

voxelization 

input data  

 

Volumetric  
normal field 

R
e

f.
 s

u
rf

ac
e

 ℳ
 

Regression  
forest  

p
re

d
ic

te
d

 c
o

rr
es

. 

NN search 

Figure 2: Pipeline of our framework. Correspondences are visualized in the
same color. Black means no correspondence for that data point.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

Using regression forests, we develop a different strategy that warps the
input data Y to the reference mesh M, denoted as Ỹ = (Ỹ,TY ) and visual-
ized as a triangular mesh in Fig. 2. If the warping is perfect, this mesh will
look clean and resemble M as much as possible. Incorrect mapping results
in huge edges between wrong correspondences. Vertex positions Ỹ repre-
sent the locations of potential matches between Y and M. Therefore, C can
be built directly by nearest neighbor search between Ỹ and M, as illustrated
in the pipeline in Fig. 2. Unlike those ICP-based methods, this process de-
pends little on the proximity of successive frames and, therefore, it is more
robust to drifting than pure ICP-based approaches.

Specifically, we consider this R3 → R3 mapping as a composite one:
R3 → Ω3 → R3. The former mapping is voxelization, while the latter is
regression. Voxelization gives a volumetric field, where each voxel v either
stores the surface normals, if it is occupied by the mesh, or stores the indi-
cators to distinguish the internal/external empty space. This representation
shares a similar spirit with implicit surface, e.g., truncated signed distance
field, and we refer to it as volumetric normal field (VNF).
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Figure 3: Without re-orientations, different types of neighbors might be cho-
sen(c.f. (a) and (b)), and hence cause different feature responses, despite the
fact that the current voxels are located on the same position on the body.

A user-specific forest is trained with many voxelized meshes off-line.
Fig. 3 depicts our volumetric feature. Given two randomly chosen neighbors
(green) of the current voxel v (blue), we consider the dot product of their
normals, and the difference of VNF within local cuboids. A local coordinate
system is attached to select neighboring voxels adaptively in order to achieve
pose invariance, as in Fig. 3. The dataset for learning is many sample-label
pairs S = {(v,xv)}. The entropy is the variance of labels: H(S) = σ2(S). If
the models of outliers are available, one can also include them in the training
data. In this case, the entropy is augmented by a classification measure, and
the forests do simultaneous classification and regression as in [3].

During training, the feature parameters that maximizes the information
gain are stored at each branch node. During testing, an input yi is first
mapped to a voxel vi, regressed to a 3D point ỹi ∈ Ỹ, and attains a closest
vertex v̂i in the reference vertex set VM: v̂i = argminv∈VM ‖ỹi−xv‖2.

Given the properly estimated correspondence C, poses and shapes are
then jointly recovered as in [4]. When combined with ICP, we confirm that
this discriminative association yields better accuracy in registration, more
stability when tracking over time, and faster convergence. Evaluations on
existing datasets demonstrate the benefits with respect to the state-of-the-art.
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