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Figure 1: Maps can bring rich 3D information.

Inferring 3D semantic and geometric information from a single monocu-
lar image has been one of the holy grails of computer vision since the be-
ginning. In this paper we are interested in exploiting geographic priors to
help outdoor scene understanding. Towards this goal we propose a holis-
tic approach that reasons jointly about 3D object detection, pose estimation,
semantic segmentation as well as depth reconstruction from a single im-
age. Our approach takes advantage of large-scale crowd-sourced maps to
generate dense geographic, geometric and semantic priors by rendering the
3D world. We demonstrate the effectiveness of our holistic model on the
challenging KITTI dataset [3], and show significant improvements over the
baselines in all metrics and tasks.

In this paper we are interested in utilizing geographic priors to help out-
door scene understanding. In particular, we focus on the tasks of 3D object
detection, semantic segmentation as well as depth reconstruction from a sin-
gle image. Towards this goal, we build 3D scene priors from freely available
maps and frame the problem as one of inference in a holistic conditional ran-
dom field (CRF) that reasons jointly about all tasks and integrates semantics,
geometry as well as geographic information.

We make use of OpenStreetMaps [1], a freely available map dataset
to extract geographic information useful for reconstruction and recognition
tasks. OSM is a polygon based map representation in the world geodetic
system (WGS), with rich labels such as building, road and tree. We refer the
reader to the left bottom subfigure in Fig. 1 for an illustration of the data.

Given a geotagged image as well as the camera parameters, we extract
a large local region of the map around the area of interest. Based on this
2D cartographic information and limited 3D information like elevation, a
visual 3D world can then be easily built from OSM by extending the objects
along the vertical direction, as shown in Fig. 1. In this paper, our 2D-to-
3D transformation is based on OSM2World, which we modified to model
buildings and trees. Moreover, we develop an OpenGL-based renderer to
visualize the local world using generic textures, semantic labeling, depth
and normal maps. This renderer will be used to create our priors for our
holistic model. Note that the priors will be inaccurate due to the error in the
geolocalization, camera pose as well as the map itself, e.g., most trees are
missing or misplaced. Furthermore it only contains static objects and thus
will be inaccurate in places occupied by e.g., cars, pedestrians.

Given a single geo-localized image x, we are interested in simultane-
ously assigning semantic labels to pixels, densely reconstructing the scene
as well as detecting objects and localizing them in the 3D world. We pa-
rameterize the segmentation task with a random variable per pixel, sp ∈
{1, ...,C}, encoding its semantic class. Dense depth reconstruction is pa-
rameterized with a continuous variable per pixel, dp ∈ [0,80], encoding the
distance in the 3D world (in meters). We parameterize each detection in 3D
with four random variables, yi = {xi,zi,θi,bi}, encoding the (x,y) position
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Figure 2: Overall performance for holistic tasks.

Depth Karsch et al. [4] Geography Ours
δ < 1.25 53.07% 61.25% 69.44%

Semantic labeling Ren et al. [5] Tighe et al. [6] Ours
IoU 71.93% 60.67% 74.78%

Table 1: Monocular depth estimation and semantic labeling performance

in the ground plane, the object pose θi as well a binary variable bi ∈ {0,1}
encoding whether the detection is a true positive. Let s = (s1, · · · ,sN),
d = (d1, · · · ,dN), y = (y1, · · · ,yM) be the set of all segmentation, depth es-
timation and detection variables, with N the size of the image and M the
set of candidate detections. We define the energy of the CRF by integrating
geographic context, appearance features and geometric properties:

E(y,s,d) = Eobj(y)+Eseg(s)+Edep(d)+Eso(s,y)+Edo(d,y)+Eds(d,s)
(1)

where Eobj,Eseg,Edep are the energies that depend on a single task and
Eso,Edo,Eds are the energies connecting different tasks. We perform ap-
proximate inference by running block coordinate descent. Thus we itera-
tively solve for each task, fixing the other ones, but taking into account the
dependencies between the tasks. We refer the reader to the full paper and
supplementary material for an in-depth explanation of all potentials.

In our experiments, we evaluate our approach on the challenging KITTI
dataset [3] over three different tasks. We tested our performance quanti-
tively on two subsets, according to the availability of the ground-truth data.
Fig. 2 depicts the overall performance of our proposed method and several
competing algorithms in semantic labeling and depth reconstruction. We
also measure the performance quantititively and our approach overperforms
all the competing algorithms [4, 5, 6].
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