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The Ensemble of Exemplar SVMs [8] (EE-SVM) is a powerful non-
parametric approach to object detection. It is widely used [1, 2, 3, 4, 6, 7,
9, 10, 11, 12, 13] because it explicitly associates a training example to each
object it detects in a test image. This enables transferring meta-data such as
segmentation masks [8, 12], 3D models [8], styles and viewpoints [1], GPS
locations [6] and part-like patches [2]. Furthermore, EE-SVM can also be
used for discovering objects parts [4, 10], scene classification [7, 10], object
classification [3], image parsing [12], image matching [9], automatic image
annotation [13] and 3D object detection [11].

An EE-SVM is a large collection of linear SVM classifiers, each trained
from one positive example and many negative ones (an E-SVM). At test time
each window is scored by all E-SVMs, and the highest score is assigned to
the window. Because of this max operation, it is necessary to calibrate the
E-SVMs to make their scores comparable. A common procedure is to cali-
brate each SVM independently, by fitting a logistic sigmoid to its output on
a validation set [8]. Such independent calibration, however, does not take
into account that the final score is the max over many E-SVMs. Moreover,
calibrating one E-SVM in isolation requires choosing which positive train-
ing samples it should score high and which ones it can afford to score low.
Such a prior association of positive training samples to E-SVMs is arbitrary,
as there is no predefined notion of how much and in which way a particular
E-SVM should generalize. What truly matters is the interplay between all
E-SVMs through the max operation.

In this paper we present a joint calibration procedure that takes into ac-
count the max operation. We calibrate all E-SVMs at the same time by opti-
mizing their joint performance after the max. Our method finds a threshold
0 for each E-SVM, so that (i) all positive windows are scored positively by
at least one E-SVM, and (ii) the number of negative windows scored pos-
itively by any E-SVM is minimized. The first criterion ensures that there
are no positive windows scored negatively after the max, while the second
criterion minimizes the number of false positives. We formalize these two
criteria in a well-defined constrained optimization problem:

L(©)

min 1 [max(w;-x—6;)]
@:{@-}?le;/\/' ! !

s.t. L[max(w;j-x—0;)] >0,Vxe P
J

1)

The first requirement is formalised in its constraints, while the second
comes in as a loss function to be minimized. In the equation, 1 is the indi-
cator function and P and N are the sets of positive and negative windows in
the training set. Furthermore, the ensemble contains E classifiers {w; }le.
Each threshold 6; defines which training samples the respective E-SVM e;
is scoring positively. By lowering a threshold we cover more positives and
thereby satisfy more constraints, but we also include more negatives and
therefore suffer a greater loss. Any positive sample can be potentially cov-
ered by any E-SVM, but at a different loss. We refer to a configuration ®
satisfying all the constraints as a feasible solution. Calibration is performed
by adjusting the thresholds ©.

The combinatorial nature of the problem makes it difficult to find the
global optimum. We represent the space of all possible solutions as a search
tree (fig. 1) and we propose an efficient, globally optimal optimization tech-
nique. By exploiting the structure of the problem we are able to identify
areas of the solution space that cannot contain the optimal solution and dis-
card them early on. Our globally optimal algorithm is able to calibrate a
few hundred E-SVMs quickly. In order to solve larger problems with thou-
sands of E-SVMs, we present a simple modification of our exact algorithm
to deliver high quality approximate solutions.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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Figure 1: Illustration of our joint calibration algorithm. (Top) the cloud shows (i)
the initial scores given by two un-calibrated E-SVMs e| and e; on some training win-
dows (positive and negative) and (ii) the E-SVMs candidate thresholds Be (Bottom)
the tree represents the space of all possible solutions. ® is a conﬁguratlon of E-SVMs
thresholds and L is the loss function of our optimization problem. L counts the num-
ber of negative windows scored positively after the max operation (|&|). Note how the
only feasible threshold configurations are those in the leaves (eq. 1).

We train EE-SVM on state-of-the-art CNN descriptors [5] and we present
experiments on 10 classes from the ILSVRC 2014 dataset and 20 from PAS-
CAL VOC 2007. Our joint calibration procedure outperforms the classic
independent sigmoid calibration [8] by a considerable margin on the task of
classifying windows as belonging to an object class or not. On object de-
tection, this better window classifier leads to an improvement of about 3%
mAP.
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