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While sparse coding on non-flat Riemannian manifolds has recently become
increasingly popular, existing solutions either are dedicated to specific man-
ifolds, or rely on optimization problems that are difficult to solve, especially
when it comes to dictionary learning. In this paper, we propose to make use
of kernels to perform coding and dictionary learning on Riemannian man-
ifolds. To this end, we introduce a general Riemannian coding framework
with its kernel-based counterpart. This lets us (i) generalize beyond the spe-
cial case of sparse coding; (ii) introduce efficient solutions to two coding
schemes; (iii) learn the kernel parameters; (iv) perform unsupervised and
supervised dictionary learning in a much simpler manner than previous Rie-
mannian coding approaches.

More specifically, let D = {di}N
i=1, di ∈M, be a dictionary on a Rie-

mannian manifold M, and x ∈M be a query point on the manifold. We
define a general Riemannian coding formulation as

min
α

δ
2(x,⊎N

j=1
α jd j

)
+λγ(α;x,D) (1)

s.t. α ∈ C,

where δ : M×M→ R+ is a metric on M, α ∈ RN is the vector of Rie-
mannian codes, γ is a prior on the codes α and C is a set of constraints
on α . Moreover,

⊎
: M× ·· · ×M×R×R · · · ×R→M is an operator

that combines multiple dictionary atoms {d j ∈M} with weights {α j} and
generates a point x̂ on M. This general formulation encapsulates intrinsic
sparse coding [2, 5], but also lets us derive and intrinsic version of Locality-
constrained Linear Coding [10]. Such intrinsic formulations, however, de-
pend on the logarithm map, which may be highly nonlinear, or not even have
an analytic solution.

To overcome these weaknesses and obtain a general formulation of Rie-
mannian coding, we propose to perform coding in RKHS. This has the
twofold advantage of yielding simple solutions to several popular coding
techniques and of resulting in a potentially better representation than stan-
dard coding techniques due to the nonlinearity of the approach. To this
end, let φ : M → H be a mapping to an RKHS induced by the kernel
k(x,y) = φ(x)T φ(y). Coding in H can then be formulated as
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s.t. α ∈ C. (2)

As shown in the paper, the reconstruction term in (2) can be kernelized.
More importantly, after kernelization, this term remains quadratic, convex
and similar to its counterpart in Euclidean space. This lets us derive efficient
solutions to two coding schemes: kernel Sparse Coding (kSC) and kernel
Locality Constrained Coding (kLCC).

In many cases, it is beneficial not only to compute the codes for a given
dictionary, but also to optimize the dictionary to best suit the problem at
hand. Given training data, and for fixed codes, we then show that, by relying
on the Representer theorem [8], the dictionary update has an analytic form.
Furthermore, we introduce an approach to supervised dictionary learning,
which, given labeled data, jointly learns the dictionary and a classifier acting
on the codes. The resulting supervised coding schemes are referred to as
kSSC and kSLCC.

We demonstrate the effectiveness of our approach on three different
types of non-flat manifolds, as well as illustrate its generality by also ap-
plying it to Euclidean space, which simply is a special type of Rieman-
nian manifold. In particular, we evaluated our different techniques on two
challenging classification datasets where the images are represented with
region covariance descriptors (RCovDs) [9], which lie on SPD manifolds.
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To this end, we considered two classification tasks: virus classification us-
ing the Kylberg dataset and material categorization using the KTH-TIPS2b
dataset. Furthermore, to illustrate the effectiveness of our coding schemes
in Euclidean space, we made use of the extended YALE-B dataset and of
Caltech101. The results given in Tables 1 and 2 evidence the benefits of
our kernel coding schemes over existing baselines, with kSLCC generally
arising as the best performer. Additional results confirming this trend for
Grassmann manifolds and for the shape manifold are provided in the paper
and in supplementary material.

Method Virus KTH-TIPS2-b
CDL [11] 69.5% 76.3%

logEuc-SC 68.3% 67.8%
logEuc-LCC 72.3% 75.9%

kSC 78.5% 78.8%
kLCC 79.4% 79.8%
kSSC 81.7% 79.9%

kSLCC 82.0% 81.2%
Table 1: Coding on SPD manifolds. Left panel. Samples from the Virus dataset [7]. Middle
panel. Samples from the KTH-TIPS2b texture dataset [1]. Right panel. Recognition accuracies.

Method YALE-B Caltech101
SRC [12] 80.5% 70.7%

LC-KSVD [6] 95.0% 73.6%
kSC 96.9% 75.1%

kLCC 97.2% 75.4%
kSSC 98.2% 75.7%

kSLCC 98.4% 76.2%

Table 2: Coding in Euclidean space. Left panel. Samples from extended YALE-B [4].
Middle panel. Samples from Caltech101 [3]. Right panel. Recognition accuracies.
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