
Understanding Classifier Errors by Examining Influential Neighbors

Mayank Kabra, Alice Robie, Kristin Branson
Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA 20147, USA.

Modern supervised learning algorithms can learn very accurate and complex
discriminating functions. But when these classifiers fail, this complexity can
also be a drawback because there is no easy, intuitive way to diagnose why
they are failing and remedy the problem.

We propose a method to gain an understanding of a classifier’s errors
for a given data set hinged on the insight that its prediction on an example
is not equally influenced by all examples in the training set. This is obvious
for classifiers such as nearest neighbor, but is also true for more complex
classifiers like boosting. But unlike nearest neighbor, which examples are
the most influential for boosting depends on the classification task. The
influence of a training example x′ on a test example x can be found in a
straightforward manner by training two classifiers: one including (x′,+1)
and the other including (x′,−1). The training example that most changes
the prediction for the given test example is the most influential.

Thus, to understand why a particular test example is mispredicted, the
few training examples that are most influential can be selected for analysis.
By viewing these examples, the engineer can focus on and visualize the
small portions of the data space relevant to that error. This will allow the
engineer to better understand the cause of the failure.

Our definition of influence enables us to propose several new methods
with which a user can diagnose the cause of a given misprediction. The
main use we propose is to find and understand label noise in the training
data set. Here, the user can determine whether errors or inconsistency in the
training labels caused the misprediction by looking at the labels of the most
influential training examples. Second, the user can examine the magnitudes
of the influence of all the training data on a mispredicted example. When
no training examples had large influence on a mispredicted example, we
observed that the training data lacked examples similar to the mispredicted
test example. In this situation, the user can review the test example and
add it and other similar examples to enrich the training data set. This will
improve the training set’s variability, and ensure all cases are adequately
represented. Third, focusing the engineer’s attention on just the relevant
training examples can give them insight into missing features in the current
representation. If we find that the mispredicted test example is influenced by
many examples of both classes in the training set, and that these examples
are labeled correctly, then the current feature set may be insufficient for
discriminating the two classes in this part of the data space. The engineer
can examine these specific examples to devise useful features.

However, for the majority of classifier families, finding which training
examples are most influential is computationally impractical because it re-
quires training a new classifier for each training example. To make compu-
tation of influence fast enough to be used in interactive, real-time systems,
we propose a dissimilarity metric that approximates influence.

Formally, we define the influence of x′ on x as:

J(x′→ x), Eh[h(x)|D1]−Eh[h(x)|D0],

where D1 =D∪{(x′,1)} and D0 =D∪{(x′,0)} are the augmented training
data sets, and the expected value is taken over the set of reasonable classi-
fiers h that are learnable from the hypothesis space H given the training
sets.

To define the dissimilarity metric we borrow the idea of version space,
the set of classifiers that perform well on the current training data set, from
active learning [3]. We define the distance between two examples x and x′ as
the fraction of version space for which the predictions on x and x′ disagree
(Figure 1(a)):

D(x,x′),
1
|V| ∑

h∈V
I(h(x) 6= h(x′))

where V is the version space for training set D and I is the indicator function.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

Mispredicted Rank 1 2 3 4(b)(a)

fa
r near

Figure 1: (a) Cartoon showing the intuition behind our version-space based
distance metric. Red pluses indicate one class of training example, blue
squares the other. Gray dashed lines indicate classifiers in the version space.
The black circle represents an unlabeled example. If we change the label of
the “near” example, the prediction of many classifiers in the version space
will change for the unlabeled point. This is not the case for the “far” exam-
ple. (b) Mispredicted validation images (black boxes) from the ImageNet
dataset using DeCaf features [2] in context of their 4 nearest neighbors, as
selected using FastBoot. These examples suggest that the convolutional net-
work is making strong use of the image background.

We show that our version-space distance and influence are closely re-
lated to each other:

D(x,x′)≈ 1
2
(1− J(x′→ x))

To compute D(x,x′) in practice, we approximate version space by the
set of all classifiers that have nearly the same accuracy as the current best
classifier. We can sample classifiers from this set by bootstrapping, in which
the training data is repeatedly subsampled in order to learn a large set of
classifiers. For boosting in particular, we developed an approximation to
bootstrapping, FastBoot, which is fast enough for interactive use. That is,
a user can select an example and query for the closest training examples
in real time. For a training set consisting of 11,407 examples with 5,439
features, learning the parameters of our FastBoot dissimilarity required a
one-time cost of 22 seconds, after which computing the dissimilarity from
any selected example to 1,000 other examples takes just 2 seconds.

We empirically showed that our FastBoot dissimilarity measure is a
good approximation of influence, and can find the most influential exam-
ples better than baseline approaches including the L1-distance as well as
linear discriminant analysis. We also showed that changing the labels of
these selected neighbors in the training data does have a large impact on the
prediction of the original test example, again much larger than for training
neighbors selected randomly or based on the L1 distance. We also showed
several practical uses of our FastBoot dissimilarity. First, we integrated it
into an interactive machine learning system for training behavior classifiers,
and showed that it could help a user identify and remove label noise and
greatly improve the generalization performance of the classifier. By using
FastBoot on the ImageNet [1] data set, we showed how it could be used to
identify label noise in crowd-sourced annotations of large data sets. We also
showed that our dissimilarity measure could be used to identify both feature
set limitations and regions of the data space where training data is needed.
Finally, we showed how FastBoot can be used to gain insight into complex
classifiers such as deep convolutional networks (Figure 1(b)).

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet:
A Large-Scale Hierarchical Image Database. CVPR, 2009.

[2] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang,
Eric Tzeng, and Trevor Darrell. Decaf: A deep convolutional activation
feature for generic visual recognition. arXiv preprint arXiv:1310.1531,
2013.

[3] Burr Settles. Active learning literature survey. University of Wisconsin,
Madison, 2010.

http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

