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Figure 1: System architecture.

For practical applications, an object detection system requires huge num-
ber of classes to meet real world needs. Many successful object detection
systems use part-based model which trains several filters (classifiers) for
each class to perform multiclass object detection. However, these methods
have linear computational complexity in regard to the number of classes and
may lead to huge computing time. To solve the problem, some works learn
a codebook for the filters and conduct operations only on the codebook to
make computational complexity sublinear in regard to the number of classes.

In sparse coding method [2] proposed, we have filters X = {X1, ...,XN}
which are collected from a set of part-based models trained on a chosen
dataset. Next, we use these filters to learn a codebook D = {D1, ...,DK}.
Codewords of the codebook D can be thought as a set of basic elements
consisting of edges and shapes. Redundant information of filters can be
eliminated, reserving only informative elements to reconstruct filters. The
optimization method of sparse coding can be formulated as follows.

min
αi j ,D j

N

∑
i=1

∥∥∥Xi−∑
K
j=1 αi jD j

∥∥∥2

2

subject to ‖αi‖0 ≤ ε,∀i = 1, ...,N∥∥D j
∥∥

2 = 1,∀ j = 1, ...,K

(1)

By leveraging the Orthogonal Matching Pursuit algorithm (OMP) [1],
we can efficiently compute an approximate solution. The original convolu-
tion process in object detection can be transformed into the following form:
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In Equation 3 we denote the feature pyramid of an image as Ψ, ∗ the convo-
lution operation, αi the ith filter’s sparse activation, Di the codeword of the
learned codebook and Xi the filter. We can get the brief representation AM
as the last term in Equation 3. A is a matrix of sparse activation and M is a
matrix of intermediate representation. We illustrate these representation in
Figure 1. Notice that we can calculate the matrix of intermediate representa-
tion M instead of calculating the score of each class separately for multiclass
object detection. In other words, we can amortize the computation cost of
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the intermediate matrix. The original DPM requires Nd operations to com-
pute N filters where d corresponds to the dimension of the filters, while this
method requires only Kd +N ‖α‖0. We can yield speedup

speedup =
Nd

Kd +N ‖α‖0
(4)

In Equation 4, N and d are fixed for a given dataset such that we should
reduce K and ‖α‖0 to yield more speedup.

Filters in object detection system are the weights trained by SVM and
we have known that image and SVM weight are very different in statistical
characteristics. The sparse coding method simply takes filters as images,
learns a codebook and use codewords of the codebook to reconstruct filters
by minimizing L2 distance between original and reconstructed filters; that
is, it minimizes difference of filter appearance. However, we should directly
reconstruct filter functionality instead of filter appearance. Our method,
Regularized Sparse Coding, proposes to solve this problem by introducing
regularization features from the training set of a given dataset to regularize
the whole process. It makes functionality receive higher weights than ap-
pearance in reconstruction. In detail, we can divide our method into two
stages, in the first stage we train a general codebook for filters collected
from part-based models. In the second stage we use regularization features
to transform filters and the codebook into performance augmented space.
Then we reconstruct the transformed filters with the transformed codebook
in performance augmented space as shown in Figure 1. As mention before,
the physical meaning of performance augmented space will enforce filters
to reconstruct functionality in it. The whole process of Regularized Sparse
Coding can be formulated as an optimization problem:
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Equation 5 suggests that the codebook is trained in the original sparse coding
way. Equation 6 describes how we involve regularization features in filter
reconstruction and generate performance augmented sparse activations. Freg
is a matrix of regularization features which is the key to our method. To
construct this matrix, we collected lots of images from the training set of
the dataset. Next, we extract feature pyramids from the collected images
and randomly pick some feature patches which have the same size of filters.
Finally, we use the feature patches as the rows of Freg and use this matrix to
regularize sparse coding. Multiply Freg into clause of Equation 6, ‖·‖2

2 term
in Equation 6 becomes
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We can consider it as norm2 distance between the original and the re-
constructed score, that is, the classification error between two filters. As we
proposed earlier, we should reconstruct filter functionality, i.e., the ability
of filter to produce accurate score map in object detection, instead of filter
appearance.
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