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Figure 1: [Left]: Descriptors that aggregate local image data across bound-
aries of textured regions lead to segmentation errors. The problem is exacer-
bated as the texton size increases. [Right]: Segmentation by Shape-Tailored
Descriptors (our method).

In this paper, we propose new dense local invariant descriptors and
show their effectiveness in texture segmentation. Local invariant descrip-
tors are image statistics (typically oriented gradients) at each pixel that de-
scribe neighborhoods in a way that is invariant to geometric and photometric
nuisances. These descriptors play an important role in characterizing local
textural properties. Existing local invariant descriptors aggregate oriented
gradients in predefined pixel neighborhoods that could contain image data
from different textured regions. This leads to ambiguity in grouping de-
scriptors, especially for descriptors near the boundary. This could lead to
segmentation errors if descriptors are grouped to form a segmentation. The
problem is exacerbated when the textons in the textures are large (see Fig. 1).

To solve this problem, one would need to compute oriented gradients
only from within textured regions. However, the segmentation is not known
a-priori. Thus, it is necessary to solve for the local descriptors and the region
of the segmentation in a joint problem. We solve this in two steps. First, we
construct novel dense local invariant descriptors, called Shape-Tailored Lo-
cal Descriptors (STLD). These descriptors are formed from shape-dependent
scale spaces of oriented gradients. The shape dependent scale spaces are the
solution of Poisson-like partial differential equations (PDE). Of particular
importance is the fact that these scale-spaces are defined within a region
of arbitrary shape and do not aggregate data outside the region of interest.
Second, we incorporate Shape-Tailored Descriptors into the Mumford-Shah
energy [7] as an example energy based on these descriptors. Optimization
jointly estimates Shape-Tailored Descriptors and their support region, which
forms the segmentation.

We have evaluated STLD on the problem of discriminating real-world
textures at various scales, and other under geometric and photometric nui-
sances. We have collected a dataset of 256 images that contain two textures.
An example result is shown in Fig. 2. A summary of results on this dataset
is given in Fig. 3. We also show the application of STLD in detecting dis-
occlusions for tracking objects consisting of multiple textured regions in
video.
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Figure 2: A sample result from our texture segmentation dataset, and com-
parison to state-of-the-art in texture segmentation.

Contour Region metrics
F-meas. GT-cov. Rand. Index Var. Info.

ODS OIS ODS OIS ODS OIS ODS OIS

STLD 0.58 0.58 0.87 0.87 0.87 0.87 0.59 0.59
non-STLD 0.17 0.17 0.81 0.81 0.82 0.82 0.77 0.77
gPb [1] 0.50 0.54 0.74 0.84 0.78 0.86 0.80 0.65
CB [4] 0.48 0.52 0.64 0.70 0.66 0.75 0.89 0.78
SIFT 0.10 0.10 0.55 0.55 0.59 0.59 1.44 1.44
Entropy [3] 0.08 0.08 0.74 0.74 0.75 0.75 0.95 0.95
Hist-5 [8] 0.14 0.14 0.66 0.66 0.70 0.70 1.18 1.18
Hist-10 [8] 0.13 0.13 0.66 0.66 0.70 0.70 1.19 1.19
Chan-Vese [2] 0.14 0.14 0.71 0.71 0.73 0.73 1.04 1.04
LAC [5] 0.09 0.09 0.55 0.55 0.58 0.58 1.41 1.41
Global Hist [6] 0.12 0.12 0.65 0.65 0.67 0.67 1.12 1.12

Figure 3: Quantitative Results on a texture dataset of 256 images. Algo-
rithms are evaluated using contour and region metrics. Higher F-measure for
the contour metric, ground truth covering (GT-cov), and rand index indicate
better fit to the ground truth, and lower variation of information (Var. Info)
indicates a better fit to ground truth. Bold red indicate best results and bold
black indicates second-best results.
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