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In this paper, we introduce a spherical embedding technique to position a
given set of silhouettes of an object as observed from a set of cameras
arbitrarily positioned around the object. Similar to previous works (e.g.,
[2, 3, 4]), we assume that the object silhouettes are the only visual cues pro-
vided, and thus traditional structure from motion (SfM) techniques based
on common feature correspondence cannot be applied successfully. Our
technique estimates dissimilarities among the silhouettes and embeds them
directly in the rotation space SO(3). The embedding is obtained by an op-
timization scheme applied over the rotations represented with exponential
maps. Since the measure for inter-silhouette dissimilarities contains many
outliers, our key idea is to perform the embedding by only using a subset of
the estimated dissimilarities. We present a technique that carefully screens
for inlier-distances, and the pairwise scaled dissimilarities are embedded in
a spherical space, diffeomorphic to SO(3). We show that our method outper-
forms spherical multi-dimensional scaling (MDS) embedding, demonstrate
its performance on various multi-view sets, and highlight its robustness to
outliers.

For each view and its associated silhouette, we would like to find the
rotations Ri relative to some neutral position for each viewpoint i. Let us
denote by D(Ri,R j) the distance between viewpoints i and j. Note that the
camera can produce different views while maintaining the same position in
3D space relative to the object due to rotation around its own principal axis.
We assume that a significant portion of dissimilarity measures correlate well
with the actual D(Ri,R j), but our method can tolerate a non-trivial amount
of outlier measures.

Given a set of pairwise distances di j between each pair of viewpoints i
and j, we would like to minimize the following expression in the space of
rotations:

∑
i j
(D(Ri,R j)−di j)

2.

The minimization requires the computation of its derivatives with respect
to Ri and R j. Since the first derivatives are not trivial to express with the
exponential maps representation, we develop an explicit expression of the
first derivatives using the Baker Campbell Hausdorff formula [1].

The problem we address is particularly challenging since the similarity
estimates are generally unreliable, and directly applying an MDS embed-
ding introduces a significant distortion. Hence, a robust technique is sought,
that may ignore portions of the input data. Our technique finds and con-
siders inlier dissimilarities and ignores outlier ones, and then embeds only
a subset of the views (see the illustration in Figure 1). The measure that
we employ to estimate the dissimilarities between silhouettes, just like most
similarity measures, tends to be more reliable for more similar shapes, and
completely unreliable for more dissimilar ones. This may suggest that by
simply ignoring large dissimilarity measures, a robust embedding can pos-
sibly be obtained. However, as we show in the paper, such a simple approach
is not robust enough as some short distance estimates are also erroneous and
distort the embedding on the sphere.

The technique that we present is more involved. It carefully defines
a graph, that may not necessarily contain all the input silhouettes, nor all
their pairwise dissimilarities. The graph is defined by a union of small sub-
sampled matrices, each of which is verified to have a plausible embedding
in SO(3). The key idea is to search and sample small sub-sampled matrices
that embed well onto a hypersphere. We create an aggregate of such sub-
sampled matrices that have significant overlap and define a graph where the
nodes are a subset of the input points and an edge is defined only for a pair
that appears in one of the matrices.

The graph of inlier dissimilarities, as a whole, is then embedded into the
space of rotations by an optimization that associates relative rotations with
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Figure 1: Given a set of silhouettes of an object as observed from a set of
cameras arbitrarily positioned around an object, we first compute the full all-
pairs dissimilarities. We discover the inlier silhouette dissimilarities using
our inlier screening technique and obtain a sparse graph. We then perform
an optimization to embed the sparse dissimilarities in SO(3). Assuming the
contours are associated with photos, then one can place them on a sphere.

the views so that they agree with the dissimilarities defined by the edges of
the graph. The direct optimization of our objective function in SO(3) allows
solving a rather sparse set of views, without completing large distances as
needed in MDS-based techniques. Our embedding technique employs expo-
nential maps and solves the embedding directly in the rotation space SO(3).
Our contribution is twofold: First, we present a spherical embedding tech-
nique based on exponential maps, and show that it outperforms spherical
MDS. Second, we develop an inlier screening technique, and show its ro-
bustness to erroneous silhouette dissimilarities.

We show that if the dissimilarities di j are in full correlation with the
ground-truth distances D(Ri,R j) then our method recovers the rotations ac-
curately. We further show the robustness of our method to erroneous dissim-
ilarities by adding noise to the ground truth data. Moreover, we demonstrate
the performance of our method on real data and compare our inlier screening
technique with one that uses the k-nearest neighbors (KNN) distances. Our
evaluation confirms that under noise or given only a partial distance matrix,
our method outperforms the alternatives.
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