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Figure 1. Our ConvNet-based marker-less motion capture algo-
rithm reconstructs joint angles of multiple people performing com-
plex motions in outdoor settings, such as in this scene recorded
with only three mobile phones: (left) 3D pose overlaid with one
camera view, (right) 3D visualization of captured skeletons.

Optical motion capture methods estimate the articulated
joint angles of moving subjects from multi-view video
recordings. Motion capture has many applications, for in-
stance in sports, biomedical research, or computer anima-
tion. While most commercial systems require markers on
the human body, marker-less approaches developed in re-
search work directly on unmodified video streams. Many
state-of-the-art marker-less methods rely on a kinematic
skeleton model with attached shape proxies, and they track
the motion by optimizing an alignment metric between
model and images in terms of the joint angles. Formulat-
ing and optimizing this usually highly non-convex energy
is difficult. Global optimization of the pose is computation-
ally expensive, and thus local methods are often used for ef-
ficiency, at the price of risking convergence to a wrong pose.
With a sufficiently high number of cameras (≥ 8), however,
efficient high accuracy marker-less tracking is feasible with
local pose optimizers. Unfortunately, this strategy starts to
fail entirely if only 2− 3 cameras are available, even when
recording simple scenes inside a studio.

In a separate strand of work, researchers developed
learning-based discriminative methods for body part detec-
tion in a single image. Detection-based pose estimation can
compute joint locations from a low number of images taken

under very general conditions. However, accuracy of esti-
mated joint locations is comparably low, mainly due to the
uncertainty in the part detections, and pose computation is
far from real-time. Also, results on video exhibit notable
jitter.

We present a novel method to fuse marker-less skeletal
motion tracking with body part detections from a convolu-
tional network (ConvNet) for efficient and accurate marker-
less motion capture with few cameras. Through fusion, the
individual strengths of either strategy are fruitfully enforced
and individual weaknesses compensated. The core contri-
bution is a new way to combine evidence from a ConvNet-
based monocular joint detector [2] with a model-based ar-
ticulated pose estimation framework [1]. This is done by
a new weighted sampling from a pose posterior distribu-
tion guided by the articulated skeleton model using part de-
tection likelihoods. This yields likely joint positions in the
image with reduced positional uncertainty, which are used
as additional constraints in a pose optimization energy. The
result is one of the first algorithms to capture temporally sta-
ble full articulated joint angles from as little as 2-3 cameras,
also of multiple actors in front of moving backgrounds.

We tested our algorithm on challenging indoor and out-
door sequences filmed with different video and mobile
phone cameras, on which model-based tracking alone fails.
The high accuracy of our method is shown through quanti-
tative comparison against ground truth poses. Our approach
can also be applied in settings where other approaches for
pose estimation with a low number of sensors, that are based
on depth cameras or inertial sensors, are hard or impossible
to be used, e.g. outdoors.
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