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Figure 1: Visualization of the trade-off between accuracy and inference time
for different methods. RFL-{1,5,15}, RFL+, and ARFL+ are the proposed
methods.

Single image super-resolution (SISR) [3] is a classical and important com-
puter vision problem with many interesting applications, ranging from med-
ical and astronomical imaging to law enforcement. The task in SISR is
to generate a visually pleasing high-resolution output from a single low-
resolution input image. Beside basic bicubic upsampling, more powerful
methods exist that rely on statistical image priors [3] or use sophisticated
machine learning techniques [2] to learn a mapping from low- to high-
resolution patches. Among the best performing algorithms are (coupled)
dictionary learning approaches [7] building on sparse-coding. Recently,
Timofte et al. [5] highlighted the computational bottlenecks of these meth-
ods and proposed to replace the single dictionary with many smaller ones,
thus avoiding the costly sparse-coding step during inference.

In this work, we observe that the efficient formulation from [5] can be
naturally casted as a locally linear multivariate regression problem of the
form

x̂H = W(xL) ·xL , (1)

where x̂H and xL are the high- and low-resolution data samples, respectively.
Learning the data-dependent regression function W(xL) can be formulated as

argmin
W(xL)

N

∑
n=1
‖xn

H−W(xn
L) ·xn

L‖2
2 , (2)

which can be naturally solved with random forests [1]. Random forests
establish the data dependence of the local regression functions by hierarchi-
cally splitting the input data in a tree structure. Each leaf node in all trees
stores a linear regression function computed by solving a simple regularized
least squares problem.

For learning the tree structure we introduce a novel objective function
that not only operates on the output but also on the input data space. In
general, the basic quality of a splitting function is computed as

Q(σ ,Θ,XH,XL) = ∑
c∈{Le,Ri}

|Xc| ·E(Xc
H,X

c
L) , (3)

where | · | is the cardinality operator and X
{Le,Ri}
{H,L} defines the low- and high-

resolution data falling into left and right nodes, respectively. The function
E(XH,XL) aims at measuring the compactness or the purity of the data. The
intuition is to have similar data samples falling into the same leaf nodes,
thus, giving coherent predictions. The novel regularized compactness mea-
sure is defined over both the output and the input space as

E(XH,XL) =
1
|X|

|X|

∑
n=1

(
‖xn

H−m(xn
L)‖2

2 +κ · ‖xn
L− x̄L‖2

2]
)
, (4)

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

Figure 2: A qualitative result for an upscaling factor of 3. We compare
the original image (top left) with 3 methods and report the PSNR and IFC
scores: (top right) bicubic: 38.33, 4.61; (bottom left) BPJDL [4]: 40.79,
4.57; (bottom right) proposed random forest: 41.55, 5.77.

where m(xn
L) is the prediction for the sample xn

L, x̄L is the mean over the
samples xn

L, and κ is a hyper-parameter steering the influence of the regu-
larization.

The experimental evaluation reveals that our random forest approach
achieves state-of-the-art results on several benchmarks, while being among
the fastest methods during inference, see Figure 1. We also note that our
super-resolution forests are relatively fast to train compared to sparse-coding
or neural network based methods. In Figure 2 we present qualitative results
for a single image. The paper (and also the poster) contains more detailed
quantitative and qualitative evaluations.
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