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The representation of indoor scenes using the Manhattan world assump-
tion [1] has been widely used in computer vision and robotics applications,
which take advantage of this assumption to simplify object representations
w.r.t. the scene layout. This simplification states that most objects in an
indoor scene are composed of planar surfaces aligned to one of three or-
thogonal directions. This set of orthogonal directions is referred to as the
Manhattan Frame (MF) of the scene. In this paper, we wish to effectively
and efficiently determine the MF of an indoor scene in the presence of noise
and outliers. Our motivation is that an accurate MF estimate can assist in a
variety of problems, such as RGB-D SLAM and 3D object understanding.

In this work, (1) we propose an accurate, fast, reliable, and robust method
to estimate the MF of an indoor scene using a single RGB-D image. (2) In
order to evaluate the properties of our method, we introduce a new evalu-
ation benchmark that comprises ground truth MFs for the popular NYUv2
dataset [3]. We also compare our method against several MF algorithms in
the literature, and show that our approach outperforms state-of-the-art tech-
niques in terms of accuracy and speed. (3) We perform controlled tests to
evaluate the repeatability and robustness of our method in challenging sce-
narios. (4) We show how our method can be used in addressing a popular
vision problem, namely RGB-D SLAM, where our algorithm is shown to
improve the performance of a popular SLAM method.
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Figure 1: Overview of our method. RGB-D Top: Original RGB image. Bottom: Inpainted
depth image from NYUv2 dataset. Originals Top: Original normals. Bottom: Original 3D point
cloud. Rotated Top: Normals after alignment with our method. Bottom: Aligned 3D point cloud,
where the wall, sofas, and tables are well aligned with the MF of the scene. Rotated Inliers
Top: Our algorithm estimates as inliers those normals that can be aligned to one of the coordinate
axes. Here, we color-code inlier normals according to the axis they are aligned to; black pixels are
outliers. Bottom: Aligned 3D point cloud with color-coded inliers; outliers (non-planar objects,
surfaces that cannot be aligned) retain their original RGB color.

The aim of indoor scene MF estimation is to determine the three domi-
nant directions, along which most surfaces and possibly lines are oriented.
Similar to previous work, we study indoor scenes that have an inherent Man-
hattan structure. Therefore, estimating the MF becomes equivalent to com-
puting the best 3D rotation matrix R that transforms surface normals (and
line directions if available) in the scene to the three unit directions or their
reflections about the center. In fact, the rows of R define the dominant di-
rections of the scene in the original coordinate system.

Problem Formulation: Applying a scene’s MF R to the matrix of scene
normals N ∈ R3×m should lead to a matrix X, whose columns are sparse.
In the absence of noise, X should be the sparsest possible matrix such that
‖X‖0 = ‖X‖1,1 = m. Equality holds here because the columns of X have
unit norm. This observation establishes the basis of our proposed solution.
In the presence of noise (e.g. due to noisy depth measurements and normal
computation) and outliers (e.g. non-Manhattan surfaces in the scene), we
incorporate the above observation to formulate the Robust MF Estimation
(RMFE) problem in Eq (1). The first term penalizes reconstruction error,
while the second term serves as a sparse regularizer.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

(RMFE) : min
R∈SO(3),X,E

‖ET ‖2,1 +λ‖X‖1,1 (1)

subject to: RN = X+E

The RMFE problem above can be solved efficiently using alternating opti-
mization and IALM (or ADMM), where the solution is achieved after itera-
tions of closed-form update steps of the primal and dual variables of Eq (1).
For more details, please refer to the paper and the supplementary material.

Benchmark: We assess our RMFE method from three perspectives. Due
the lack of rigorous evaluation of MF algorithms, there is no standardized
dataset and ground truth available in the literature. To fill this gap, we con-
tribute two sets of annotated data for evaluation. (i) We create a new bench-
mark framework for evaluating MF estimation algorithms from RGB-D im-
ages by generating MF ground truth (rotation matrix) for the entire NYUv2
dataset [3]. We use this new benchmark to quantitatively compare the per-
formance of our method against the algorithms available in the literature
(refer to Table 1). (ii) We perform a sensitivity analysis to gauge repeata-
bility and robustness in the presence of varying amounts of scene rotation,
noise and object misalignment in the scene (refer to Figure 2). (iii) We
show how our method can be used in RGB-D SLAM and how it improves
the performance of a popular SLAM method (refer to Table 2).

Table 1: Average angular error in degrees and runtime in seconds for 6 MF methods. Our
method and ES outperform all other methods, with our method having a slight advantage in θy
and θz. As for runtime, our method is significantly faster than its closest competitor.

Category RGB RGB-D
Method VP VPGC MPE MMF ES Ours

θx 7.2◦ 21.4◦ 26.3◦ 8.1◦ 2.3◦ 2.3◦

θy 9.7◦ 35.7◦ 18.1◦ 19.6◦ 5.6◦ 4.7◦

θz 24.1◦ 20.5◦ 18.2◦ 9.8◦ 2.9◦ 2.8◦

Runtime (s) 17.2 9.6 2.8 0.1 21.4 0.9

Table 2: Columns 1 - 3: Performance of RGB-D SLAM method [2] with no pre-rotation, ES [3],
and our pre-rotation. Columns 4 - 5: SLAM performance (with only translation computed), with
ES and our rotation as input. Our method improves runtime without compromising on accuracy,
since our estimated rotations are a very good prior to the final rotations estimated by SLAM.

Method SLAM R+T SLAM T
Pre-rotation None ES Ours ES Ours
Trans RMSE 0.103m 0.113m 0.107m 0.125m 0.108m
Rot RMSE 3.41◦ 3.39◦ 3.37◦ 22.3◦ 4.61◦

Runtime 145s 141s 112s 141s 112s
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Figure 2: First row: Images from the new dataset for robust MF evaluation. There are four
different categories of scenes with increasing difficulty. (A): all objects are aligned with the
scene, (B): some objects are aligned, (C): all objects are equally unaligned, (D): all objects are
unaligned at different orientations. Second row: Estimation error around the y-axis. Red curve:
Ours. Green curve: ES [3]. Our method performs consistently better in A-C. Category D consists
of more difficult images and we see the downgrade in performance on both methods.
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