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A histogram is a discrete approximation of the probability distribution of
a continuous random variable. For high dimensional signals such as im-
ages, when one treats individual data points as independent samples from
a random source, the corresponding histogram is known as a marginal his-
togram [2]. Most vision applications interpret a marginal histogram as an
approximate description of the underlying distribution, specifying the prob-
ability of the data points taking a particular value. However, a marginal his-
togram collected from an image provides more information as it represents
an ensemble constraint on the image, specifying the proportion of the pixels
taking each value. Several recent studies have shown that image restoration
tasks can benefit from such ensemble constraints, but incorporating these
constraints with existing restoration methods in a numerically stable man-
ner remains a challenging problem [1].

In this work, we emphasize the aspect of marginal histograms as ensem-
ble constraints and introduce a unified framework, UniHIST, to incorporate
such constraints in image restoration problems. In UniHIST, we use the
quadratic Wasserstein (W2) distance [4] to measure the statistical distance
between the marginal histograms of the output image and the reference his-
togram. The W2 distance can be computed directly from data without re-
lying on density estimation, providing a smooth and differentiable form to
measure the dissimilarity between histograms. By including this term in
an optimization framework, UniHIST can readily work with most existing
restoration methods. We demonstrate the benefits of marginal histograms
and the effectiveness of UniHIST through two applications: denoising of
pattern images and non-blind deconvolution of natural images. We show
that UniHIST enhanced restoration algorithms lead to improved restoration
quality over existing state-of-the-art methods.

Method The W2 distance between two probability measures p,q over
the real line is defined as the variational solution to the Monge problem [4]:
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where the infimum is over all deterministic functions φ : R 7→R that trans-
fer an arbitrary random variable x with distribution p to a new variable φ(x)
with distribution q. A fundamental result in the optimal transport theory is
that the optimal φ minimizing Eq.(1) has a closed-form solution:
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)
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where Fp is the cumulative distribution function of distribution p, and F−1
q

is the percentile function of distribution q.
For our framework, we need to measure the statistical distance between

the marginal histogram hx of an image x with n pixels and a given marginal
histogram hq. By treating x= (x1, · · · ,xn)

T as n independent samples drawn
from a distribution p, and hq as the discrete approximation of another distri-
bution q, we introduce an empirical Ŵ2 measure as follows:
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where function φ maps xi to ξi = φ(xi), such that the transformed samples
ξξξ = (ξ1, · · · ,ξn)

T satisfy the marginal histogram hq. Analogous to the con-
tinuous case, the optimal φ̂ for Eq.(3) is given as [4]:

ξi = φ̂hx→hq(xi) = F−1
hq

(Fhx(xi)) (4)

where F−1
hq

and Fhx are the percentile function and the cumulative distribu-
tion function constructed from hq and hx respectively. A notable property of
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(a) Original Image (b) Noisy Observation (c) NLDD [3] (d) NLDD+UniHIST

Figure 1: A visual example for pattern image denoising. The original im-
age (a) is degraded with a strong Gaussian noise (σ2 = 0.1). (c) PSNR =
20.29, SSIM = 0.83 (d) PSNR = 24.80, SSIM = 0.90. By enforcing marginal
intensity histogram constraints in the denoising process, our method (NLD-
D+UniHIST) significantly improves the visual quality and the quantitative
results over the original NLDD method.

the empirical W2 measure is that it can be evaluated in the quadratic form of
x, which allows easy integration with existing image restoration methods.

Suppose we have knowledge about the clean image x, specifying the
marginal histogram of x in a linearly transformed domain such as gradients
or wavelet coefficients. We would like to use this information in the restora-
tion method. We cast the problem into the following form:

min
x

λ

2
‖y−Ax‖2

2 +Γ(x)+
β

2
Ŵ 2

2 (hBx,hr) (5)

where the first term represents the `2 difference between the observation y
and the image formation model Ax, Γ represents a regularization term on
x, B is a linear transform, and Ŵ 2

2 measures the discrepancy between the
marginal histograms of Bx and a reference histogram hr in the transformed
domain. Following the definition in (3), we introduce an auxiliary vector ξξξ

(of the same dimension as Bx) and formulate UniHIST as follows:

min
x,ξξξ

λ

2
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2+Γ(x)+
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2
‖ξξξ −Bx‖2

2 s.t.hξξξ = hr (6)

This problem can be readily solved with block coordinate descent by alter-
natively minimizing Eq.(6) with regards to ξξξ and x respectively. The x sub-
problem comes with two quadratic terms and a regularization term Γ on x,
which can be efficiently solved through half-quadratic splitting or proximal
algorithms; the ξξξ subproblem can be solved in closed-form using Eq.(4).

Applications We provide two applications of the proposed UniHIST
framework: denoising of pattern images and non-blind deconvolution of
natural images. For pattern images, we show that by enforcing marginal
intensity histogram constraints, UniHIST significantly improves the visual
quality and the quantitative results over the state-of-the-art denoising meth-
ods; for natural images, we show that by including marginal gradient his-
togram constraints, UniHIST enhances the mid-level visual details for non-
blind deconvolution algorithms. Figure 1 presents one visual example for
pattern image denoising. Please refer to the paper and the supplemental
material for further details.
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