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Figure 1: Overview of our system for 3D object localization by combining
SFM cues (green) with object detection cues (brown). Given monocular
video input, camera poses and ground plane are estimated by SFM, while a
dense tracking framework yields 3D points on objects. These are combined
with cues from object detection hypotheses and object tracks in a joint
optimization framework that allows for soft adjustment of track positions to
maximize consistency with 3D cues, bounding boxes and detection scores.

We present a framework for fast and highly accurate 3D localization of ob-
jects such as cars in autonomous driving applications, using a single camera.
Our localization framework jointly uses information from complementary
modalities such as structure from motion (SFM) and object detection to
achieve high localization accuracy in both near and far fields. This is in
contrast to prior works that rely purely on detector outputs, or motion seg-
mentation based on sparse feature tracks. Rather than completely commit
to tracklets generated by a 2D tracker, we make novel use of raw detection
scores to allow our 3D bounding boxes to adapt to better quality 3D cues.
To extract SFM cues, we demonstrate the advantages of dense tracking over
sparse mechanisms in autonomous driving scenarios. In contrast to complex
scene understanding, our formulation for 3D localization is efficient and can
be regarded as an extension of sparse bundle adjustment to incorporate object
detection cues. Figure 1 illustrates an overview of the system.

Given monocular video input, we estimate the pose and ground plane
corresponding to the camera using the system of [3]. Intuitively, SFM can
estimate accurate 3D points on nearby objects, but suffers due to the low
resolution of those far away. On the other hand, bounding boxes from object
detection are obtainable for distant objects, but are often inconsistent with the
3D scene in the near field. Thus, we seek 3D bounding boxes that are most
consistent with 2D tracked ones, while also maximizing the alignment of
estimated object pose with tracked 3D points. We define a combined energy
function to be minimized over the set of object poses {ΩΩΩi(t)}, 3D bounding
box dimensions Bi and the set of tracked 3D points on each object Xi

o, for
objects i = 1, · · · ,N, as:

E
(
{ΩΩΩi(t)},{Bi},{Xi

o}
)
= Es f m +λoEob j +λpEprior, (1)

where Es f m, Eob j and Eprior are the SFM cost, object cost and the prior cost,
respectively. We formulate the objective function in (1) as an extension of
traditional bundle adjustment to incorporate object cues, since it is defined
over a set of variables {ΩΩΩi(t)} that constitutes “poses” and another set given
by {Bi,Xi

o} that constitutes “3D points”.
To obtain 3D points on objects, the PnP-based pose computation of

background SFM does not suffice since it requires prior knowledge of feature
tracks, which are not plentiful on objects like cars. Instead, given the object
pose at time t and an existing set of 3D points, the pose at time t + 1 is
computed by minimizing intensity differences. Using object pose from
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Figure 2: Output of our localization system. The bottom left panel shows the
monocular SFM camera trajectory. The top panel shows input 2D bounding
boxes in red, horizon from estimated ground plane and the estimated 3D
bounding boxes in green with distances in magenta. The bottom right panel
shows the top view of the ground truth object localization from laser scanner
in red, compared to our 3D object localization in blue.

intensity alignment rather than feature tracks allows epipolar guidance for
a TV-L1 optical flow process that generates dense feature tracks. The flow
computation reduces to a 1D search and is performed only within the object
bounding boxes. Note that the intensity-aligned pose and triangulated 3D
points from dense tracking are refined by the joint optimization framework
that also incorporates other cues such as objects and ground plane. The total
SFM cost Es f m favors object poses that minimize reprojection error for object
3D points and best align the object with the SFM ground plane.

The total object cost Eob j is a weighted sum of the bounding box and
detection costs. The bounding box cost seeks the object poses and dimensions
whose projection through the estimated camera poses are most consistent
with the detected 2D bounding boxes. Further, we model detection scores as
a sum of Gaussians, that can be evaluated during continuous optimization
without evaluating the detector model. This allows the detection cost to undo
any tracking errors and seek object poses that correspond to high detection
scores as well as good alignment with other 3D cues. Finally, the energy
Eprior encourages object trajectories to be smooth and object sizes to be close
to the category mean.

We evaluate our system on the KITTI dataset [2]. Our ablation studies
demonstrate the effectiveness of various components such as ground plane
estimation, object bounding boxes, detection score modeling and 3D points
from epipolar-guided optical flow using intensity-aligned poses. The posi-
tion accuracy in depth is 8.3% for near objects and 10.4% for far objects,
compared to 13.9% and 26.9%, repsectively, for a baseline method. Our
approach can also improve the accuracy of existing scene understanding
frameworks, demonstrated by a 7% improvement in position accuracy over
the results of [1]. A sample output from our system is shown in Figure 2.

To summarize, we propose a novel framework for 3D object localization,
designed for autonomous driving applications. It recognizes and exploits
the complementary strengths of SFM cues (3D points and ground plane)
and object cues (bounding boxes and detection scores), to achieve good 3D
localization accuracy in both near and far fields.
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